Abstract:Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Interaction-driven Game Engine (IGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as an IGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$ : configure the game script segment based on the user's input; (2) $P_{code}$ : generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$ : interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on the LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our IGE smoothly. We construct an IGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness. The code and data are available at \url{https://github.com/alterego238/IGE}.
Abstract:In this paper, we focus on \emph{virtual world}, a cyberspace where people can live in. An ideal virtual world shares great similarity with our real world. One of the crucial aspects is its evolving nature, reflected by the individuals' capacity to grow and thereby influence the objective world. Such dynamics is unpredictable and beyond the reach of existing systems. For this, we propose a special engine called \emph{Delta-Engine} to drive this virtual world. $\Delta$ associates the world's evolution to the engine's expansion. A delta-engine consists of a base engine and a neural proxy. Given an observation, the proxy generates new code based on the base engine through the process of \emph{incremental prediction}. This paper presents a full-stack introduction to the delta-engine. The key feature of the delta-engine is its scalability to unknown elements within the world, Technically, it derives from the prefect co-work of the neural proxy and the base engine, and the alignment with high-quality data. We an engine-oriented fine-tuning method that embeds the base engine into the proxy. We then discuss a human-AI collaborative design process to produce novel and interesting data efficiently. Eventually, we propose three evaluation principles to comprehensively assess the performance of a delta engine: naive evaluation, incremental evaluation, and adversarial evaluation. Our code, data, and models are open-sourced at \url{https://github.com/gingasan/delta-engine}.
Abstract:Drama is a form of storytelling inspired by human creativity, proceeding with a predefined storyline, carrying emotions and thoughts. This paper introduces \emph{LLM-based interactive drama}, which endows traditional drama with an unprecedented immersion, where a person is allowed to walk into it and interact with the characters and scenes. We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction-and study the entire pipeline to forge a backbone \emph{drama LLM} to drive the playing process, which is challenged by limited drama resources, uncontrollable narrative development, and complicated instruction following. We propose \emph{Narrative Chain} to offer finer control over the narrative progression during interaction with players; \emph{Auto-Drama} to synthesize drama scripts given arbitrary stories; \emph{Sparse Instruction Tuning} to allow the model to follow sophisticated instructions. We manually craft 3 scripts, \emph{Detective Conan}, \emph{Harry Potter}, \emph{Romeo and Juliet}, and design a 5-dimension principle to evaluate the drama LLM comprehensively.