Abstract:The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game descriptions and generate game-play processes. The IDGE allows users to create games simply by natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts the game states given player actions. The computation of game states must be precise; otherwise, slight errors could corrupt the game-play experience. This is challenging because of the gap between stability and diversity. To address this, we train the IDGE in a curriculum manner that progressively increases its exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, which not only supports a wide range of poker variants but also allows for highly individualized new poker games through natural language inputs. This work lays the groundwork for future advancements in transforming how games are created and played.
Abstract:Drama is a form of storytelling inspired by human creativity, proceeding with a predefined storyline, carrying emotions and thoughts. This paper introduces \emph{LLM-based interactive drama}, which endows traditional drama with an unprecedented immersion, where a person is allowed to walk into it and interact with the characters and scenes. We define this new artistic genre by 6 essential elements-plot, character, thought, diction, spectacle and interaction-and study the entire pipeline to forge a backbone \emph{drama LLM} to drive the playing process, which is challenged by limited drama resources, uncontrollable narrative development, and complicated instruction following. We propose \emph{Narrative Chain} to offer finer control over the narrative progression during interaction with players; \emph{Auto-Drama} to synthesize drama scripts given arbitrary stories; \emph{Sparse Instruction Tuning} to allow the model to follow sophisticated instructions. We manually craft 3 scripts, \emph{Detective Conan}, \emph{Harry Potter}, \emph{Romeo and Juliet}, and design a 5-dimension principle to evaluate the drama LLM comprehensively.
Abstract:The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game rules and autonomously generate game-play processes. The IDGE allows users to create games by issuing simple natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts in-game states given player actions. It is a challenging task because the computation of in-game states must be precise; otherwise, slight errors could disrupt the game-play. To address this, we train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, a universally cherished card game. The engine we've designed not only supports a wide range of poker variants but also allows for high customization of rules through natural language inputs. Furthermore, it also favors rapid prototyping of new games from minimal samples, proposing an innovative paradigm in game development that relies on minimal prompt and data engineering. This work lays the groundwork for future advancements in instruction-driven game creation, potentially transforming how games are designed and played.