Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
Abstract:Deep Anterior Lamellar Keratoplasty (DALK) is a partial-thickness corneal transplant procedure used to treat corneal stromal diseases. A crucial step in this procedure is the precise separation of the deep stroma from Descemet's membrane (DM) using the Big Bubble technique. To simplify the tasks of needle insertion and pneumo-dissection in this technique, we previously developed an Optical Coherence Tomography (OCT)-guided, eye-mountable robot that uses real-time tracking of corneal layers from M-mode OCT signals for control. However, signal noise and instability during manipulation of the OCT fiber sensor-integrated needle have hindered the performance of conventional deep-learning segmentation methods, resulting in rough and inaccurate detection of corneal layers. To address these challenges, we have developed a topology-based deep-learning segmentation method that integrates a topological loss function with a modified network architecture. This approach effectively reduces the effects of noise and improves segmentation speed, precision, and stability. Validation using in vivo, ex vivo, and hybrid rabbit eye datasets demonstrates that our method outperforms traditional loss-based techniques, providing fast, accurate, and robust segmentation of the epithelium and DM to guide surgery.
Abstract:Autonomous surgical robots have demonstrated significant potential to standardize surgical outcomes, driving innovations that enhance safety and consistency regardless of individual surgeon experience. Deep anterior lamellar keratoplasty (DALK), a partial thickness corneal transplant surgery aimed at replacing the anterior part of cornea above Descemet membrane (DM), would greatly benefit from an autonomous surgical approach as it highly relies on surgeon skill with high perforation rates. In this study, we proposed a novel autonomous surgical robotic system (AUTO-DALK) based on a customized neural network capable of precise needle control and consistent big bubble demarcation on cadaver and live rabbit models. We demonstrate the feasibility of an AI-based image-guided vertical drilling approach for big bubble generation, in contrast to the conventional horizontal needle approach. Our system integrates an optical coherence tomography (OCT) fiber optic distal sensor into the eye-mountable micro robotic system, which automatically segments OCT M-mode depth signals to identify corneal layers using a custom deep learning algorithm. It enables the robot to autonomously guide the needle to targeted tissue layers via a depth-controlled feedback loop. We compared autonomous needle insertion performance and resulting pneumo-dissection using AUTO-DALK against 1) freehand insertion, 2) OCT sensor guided manual insertion, and 3) teleoperated robotic insertion, reporting significant improvements in insertion depth, pneumo-dissection depth, task completion time, and big bubble formation. Ex vivo and in vivo results indicate that the AI-driven, AUTO-DALK system, is a promising solution to standardize pneumo-dissection outcomes for partial thickness keratoplasty.
Abstract:This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at https://github.com/nuochenpku/Awesome-Role-Play-Papers.
Abstract:Recently, a surge of 3D style transfer methods has been proposed that leverage the scene reconstruction power of a pre-trained neural radiance field (NeRF). To successfully stylize a scene this way, one must first reconstruct a photo-realistic radiance field from collected images of the scene. However, when only sparse input views are available, pre-trained few-shot NeRFs often suffer from high-frequency artifacts, which are generated as a by-product of high-frequency details for improving reconstruction quality. Is it possible to generate more faithful stylized scenes from sparse inputs by directly optimizing encoding-based scene representation with target style? In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures. We propose a coarse-to-fine sparse-view scene stylization framework, where a novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations. We also propose a new optimization strategy with content strength annealing to achieve realistic stylization and better content preservation. Extensive experiments demonstrate that our method can achieve high-quality stylization of sparse-view scenes and outperforms fine-tuning-based baselines in terms of stylization quality and efficiency.
Abstract:The Instruction-Driven Game Engine (IDGE) project aims to democratize game development by enabling a large language model (LLM) to follow free-form game rules and autonomously generate game-play processes. The IDGE allows users to create games by issuing simple natural language instructions, which significantly lowers the barrier for game development. We approach the learning process for IDGEs as a Next State Prediction task, wherein the model autoregressively predicts in-game states given player actions. It is a challenging task because the computation of in-game states must be precise; otherwise, slight errors could disrupt the game-play. To address this, we train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios. Our initial progress lies in developing an IDGE for Poker, a universally cherished card game. The engine we've designed not only supports a wide range of poker variants but also allows for high customization of rules through natural language inputs. Furthermore, it also favors rapid prototyping of new games from minimal samples, proposing an innovative paradigm in game development that relies on minimal prompt and data engineering. This work lays the groundwork for future advancements in instruction-driven game creation, potentially transforming how games are designed and played.
Abstract:Long text generation, such as novel writing or discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, Temp-Lora embeds this information directly into the model's parameters. In the process of long text generation, we use a temporary Lora module, progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long texts, as indicated by a 13.2% decrease in perplexity on a subset of PG19, and a 29.6% decrease in perplexity along with a 53.2% increase in BLEU score on GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. While ensuring a slight improvement in generation quality (a decrease of 3.8% in PPL), it enables a reduction of 70.5% in the FLOPs required for inference and a 51.5% decrease in latency.
Abstract:Neural radiance fields (NeRFs) have achieved impressive view synthesis results by learning an implicit volumetric representation from multi-view images. To project the implicit representation into an image, NeRF employs volume rendering that approximates the continuous integrals of rays as an accumulation of the colors and densities of the sampled points. Although this approximation enables efficient rendering, it ignores the direction information in point intervals, resulting in ambiguous features and limited reconstruction quality. In this paper, we propose an anisotropic neural representation learning method that utilizes learnable view-dependent features to improve scene representation and reconstruction. We model the volumetric function as spherical harmonic (SH)-guided anisotropic features, parameterized by multilayer perceptrons, facilitating ambiguity elimination while preserving the rendering efficiency. To achieve robust scene reconstruction without anisotropy overfitting, we regularize the energy of the anisotropic features during training. Our method is flexiable and can be plugged into NeRF-based frameworks. Extensive experiments show that the proposed representation can boost the rendering quality of various NeRFs and achieve state-of-the-art rendering performance on both synthetic and real-world scenes.
Abstract:Up to 150000 asteroids will be visible in the images of the ESA Euclid space telescope, and the instruments of Euclid offer multiband visual to near-infrared photometry and slitless spectra of these objects. Most asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the StreakDet software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25-0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures.
Abstract:'Data' plays a central role in data-driven methods, but is not often the subject of focus in investigations of machine learning algorithms as applied to Earth System Modeling related problems. Here we consider the case of eddy-mean interaction in rotating stratified turbulence in the presence of lateral boundaries, a problem of relevance to ocean modeling, where the eddy fluxes contain dynamically inert rotational components that are expected to contaminate the learning process. An often utilized choice in the literature is to learn from the divergence of the eddy fluxes. Here we provide theoretical arguments and numerical evidence that learning from the eddy fluxes with the rotational component appropriately filtered out results in models with comparable or better skill, but substantially improved robustness. If we simply want a data-driven model to have predictive skill then the choice of data choice and/or quality may not be critical, but we argue it is highly desirable and perhaps even necessary if we want to leverage data-driven methods to aid in discovering unknown or hidden physical processes within the data itself.
Abstract:In this paper, we investigate phase retrieval algorithm for the single particle X-ray imaging data. We present a variance-reduced randomized Kaczmarz (VR-RK) algorithm for phase retrieval. The VR-RK algorithm is inspired by the randomized Kaczmarz method and the Stochastic Variance Reduce Gradient Descent (SVRG) algorithm. Numerical experiments show that the VR-RK algorithm has a faster convergence rate than randomized Kaczmarz algorithm and the iterative projection phase retrieval methods, such as the hybrid input output (HIO) and the relaxed averaged alternating reflections (RAAR) methods. The VR-RK algorithm can recover the phases with higher accuracy, and is robust at the presence of noise. Experimental results on the scattering data from individual particles show that the VR-RK algorithm can recover phases and improve the single particle image identification.