Abstract:Deep Anterior Lamellar Keratoplasty (DALK) is a partial-thickness corneal transplant procedure used to treat corneal stromal diseases. A crucial step in this procedure is the precise separation of the deep stroma from Descemet's membrane (DM) using the Big Bubble technique. To simplify the tasks of needle insertion and pneumo-dissection in this technique, we previously developed an Optical Coherence Tomography (OCT)-guided, eye-mountable robot that uses real-time tracking of corneal layers from M-mode OCT signals for control. However, signal noise and instability during manipulation of the OCT fiber sensor-integrated needle have hindered the performance of conventional deep-learning segmentation methods, resulting in rough and inaccurate detection of corneal layers. To address these challenges, we have developed a topology-based deep-learning segmentation method that integrates a topological loss function with a modified network architecture. This approach effectively reduces the effects of noise and improves segmentation speed, precision, and stability. Validation using in vivo, ex vivo, and hybrid rabbit eye datasets demonstrates that our method outperforms traditional loss-based techniques, providing fast, accurate, and robust segmentation of the epithelium and DM to guide surgery.
Abstract:Autonomous surgical robots have demonstrated significant potential to standardize surgical outcomes, driving innovations that enhance safety and consistency regardless of individual surgeon experience. Deep anterior lamellar keratoplasty (DALK), a partial thickness corneal transplant surgery aimed at replacing the anterior part of cornea above Descemet membrane (DM), would greatly benefit from an autonomous surgical approach as it highly relies on surgeon skill with high perforation rates. In this study, we proposed a novel autonomous surgical robotic system (AUTO-DALK) based on a customized neural network capable of precise needle control and consistent big bubble demarcation on cadaver and live rabbit models. We demonstrate the feasibility of an AI-based image-guided vertical drilling approach for big bubble generation, in contrast to the conventional horizontal needle approach. Our system integrates an optical coherence tomography (OCT) fiber optic distal sensor into the eye-mountable micro robotic system, which automatically segments OCT M-mode depth signals to identify corneal layers using a custom deep learning algorithm. It enables the robot to autonomously guide the needle to targeted tissue layers via a depth-controlled feedback loop. We compared autonomous needle insertion performance and resulting pneumo-dissection using AUTO-DALK against 1) freehand insertion, 2) OCT sensor guided manual insertion, and 3) teleoperated robotic insertion, reporting significant improvements in insertion depth, pneumo-dissection depth, task completion time, and big bubble formation. Ex vivo and in vivo results indicate that the AI-driven, AUTO-DALK system, is a promising solution to standardize pneumo-dissection outcomes for partial thickness keratoplasty.
Abstract:Autonomous robotic surgery has the potential to provide efficacy, safety, and consistency independent of individual surgeons skill and experience. Autonomous soft-tissue surgery in unstructured and deformable environments is especially challenging as it necessitates intricate imaging, tissue tracking and surgical planning techniques, as well as a precise execution via highly adaptable control strategies. In the laparoscopic setting, soft-tissue surgery is even more challenging due to the need for high maneuverability and repeatability under motion and vision constraints. We demonstrate the first robotic laparoscopic soft tissue surgery with a level of autonomy of 3 out of 5, which allows the operator to select among autonomously generated surgical plans while the robot executes a wide range of tasks independently. We also demonstrate the first in vivo autonomous robotic laparoscopic surgery via intestinal anastomosis on porcine models. We compared the criteria including needle placement corrections, suture spacing, suture bite size, completion time, lumen patency, and leak pressure between the developed system, manual laparoscopic surgery, and robot-assisted surgery (RAS). The ex vivo results indicate that our system outperforms expert surgeons and RAS techniques in terms of consistency and accuracy, and it leads to a remarkable anastomosis quality in living pigs. These results demonstrate that surgical robots exhibiting high levels of autonomy have the potential to improve consistency, patient outcomes, and access to a standard surgical technique.