Abstract:Online egocentric gaze estimation predicts where a camera wearer is looking from first-person video using only past and current frames, a task essential for augmented reality and assistive technologies. Unlike third-person gaze estimation, this setting lacks explicit head or eye signals, requiring models to infer current visual attention from sparse, indirect cues such as hand-object interactions and salient scene content. We observe that gaze exhibits strong temporal continuity during goal-directed activities: knowing where a person looked recently provides a powerful prior for predicting where they look next. Inspired by vision-conditioned autoregressive decoding in vision-language models, we propose ARGaze, which reformulates gaze estimation as sequential prediction: at each timestep, a transformer decoder predicts current gaze by conditioning on (i) current visual features and (ii) a fixed-length Gaze Context Window of recent gaze target estimates. This design enforces causality and enables bounded-resource streaming inference. We achieve state-of-the-art performance across multiple egocentric benchmarks under online evaluation, with extensive ablations validating that autoregressive modeling with bounded gaze history is critical for robust prediction. We will release our source code and pre-trained models.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:Recently, data-centric AI methodology has been a dominant paradigm in single-cell transcriptomics analysis, which treats data representation rather than model complexity as the fundamental bottleneck. In the review of current studies, earlier sequence methods treat cells as independent entities and adapt prevalent ML models to analyze their directly inherited sequence data. Despite their simplicity and intuition, these methods overlook the latent intercellular relationships driven by the functional mechanisms of biological systems and the inherent quality issues of the raw sequence data. Therefore, a series of structured methods has emerged. Although they employ various heuristic rules to capture intricate intercellular relationships and enhance the raw sequencing data, these methods often neglect biological prior knowledge. This omission incurs substantial overhead and yields suboptimal graph representations, thereby hindering the utility of ML models. To address them, we propose DOGMA, a holistic data-centric framework designed for the structural reshaping and semantic enhancement of raw data through multi-level biological prior knowledge. Transcending reliance on stochastic heuristics, DOGMA redefines graph construction by integrating Statistical Anchors with Cell Ontology and Phylogenetic Trees to enable deterministic structure discovery and robust cross-species alignment. Furthermore, Gene Ontology is utilized to bridge the feature-level semantic gap by incorporating functional priors. In complex multi-species and multi-organ benchmarks, DOGMA achieves SOTA performance, exhibiting superior zero-shot robustness and sample efficiency while operating with significantly lower computational cost.
Abstract:Drug-Drug Interactions (DDIs) significantly influence therapeutic efficacy and patient safety. As experimental discovery is resource-intensive and time-consuming, efficient computational methodologies have become essential. The predominant paradigm formulates DDI prediction as a drug graph-based link prediction task. However, further progress is hindered by two fundamental challenges: (1) lack of high-quality data: most studies rely on small-scale DDI datasets and single-modal drug representations; (2) lack of standardized evaluation: inconsistent scenarios, varied metrics, and diverse baselines. To address the above issues, we propose OpenDDI, a comprehensive benchmark for DDI prediction. Specifically, (1) from the data perspective, OpenDDI unifies 6 widely used DDI datasets and 2 existing forms of drug representation, while additionally contributing 3 new large-scale LLM-augmented datasets and a new multimodal drug representation covering 5 modalities. (2) From the evaluation perspective, OpenDDI unifies 20 SOTA model baselines across 3 downstream tasks, with standardized protocols for data quality, effectiveness, generalization, robustness, and efficiency. Based on OpenDDI, we conduct a comprehensive evaluation and derive 10 valuable insights for DDI prediction while exposing current limitations to provide critical guidance for this rapidly evolving field. Our code is available at https://github.com/xiaoriwuguang/OpenDDI
Abstract:Diffusion Large Language Models (dLLMs) have demonstrated promising generative capabilities and are increasingly used to produce formal languages defined by context-free grammars, such as source code and chemical expressions. However, as probabilistic models, they still struggle to generate syntactically valid outputs reliably. A natural and promising direction to address this issue is to adapt constrained decoding techniques to enforce grammatical correctness during generation. However, applying these techniques faces two primary obstacles. On the one hand, the non-autoregressive nature of dLLMs renders most existing constrained decoding approaches inapplicable. On the other hand, current approaches specifically designed for dLLMs may allow intermediate outputs that are impossible to complete into valid sentences, which significantly limits their reliability in practice. To address these challenges, we present LAVE, a constrained decoding approach specifically designed for dLLMs. Our approach leverages a key property of dLLMs, namely their ability to predict token distributions for all positions in parallel during each forward pass. Whenever a new token is proposed by model, LAVE performs lookahead using these distributions to efficiently and reliably verify the validity of the proposed token. This design ensures reliable constraints by reliably preserving the potential for intermediate outputs to be extended into valid sentences. Extensive experiments across four widely used dLLMs and three representative benchmarks demonstrate that LAVE consistently outperforms existing baselines and achieves substantial improvements in syntactic correctness, while incurring negligible runtime overhead.
Abstract:The convergence of artificial intelligence and materials science presents a transformative opportunity, but achieving true acceleration in discovery requires moving beyond task-isolated, fine-tuned models toward agentic systems that plan, act, and learn across the full discovery loop. This survey advances a unique pipeline-centric view that spans from corpus curation and pretraining, through domain adaptation and instruction tuning, to goal-conditioned agents interfacing with simulation and experimental platforms. Unlike prior reviews, we treat the entire process as an end-to-end system to be optimized for tangible discovery outcomes rather than proxy benchmarks. This perspective allows us to trace how upstream design choices-such as data curation and training objectives-can be aligned with downstream experimental success through effective credit assignment. To bridge communities and establish a shared frame of reference, we first present an integrated lens that aligns terminology, evaluation, and workflow stages across AI and materials science. We then analyze the field through two focused lenses: From the AI perspective, the survey details LLM strengths in pattern recognition, predictive analytics, and natural language processing for literature mining, materials characterization, and property prediction; from the materials science perspective, it highlights applications in materials design, process optimization, and the acceleration of computational workflows via integration with external tools (e.g., DFT, robotic labs). Finally, we contrast passive, reactive approaches with agentic design, cataloging current contributions while motivating systems that pursue long-horizon goals with autonomy, memory, and tool use. This survey charts a practical roadmap towards autonomous, safety-aware LLM agents aimed at discovering novel and useful materials.
Abstract:Federated graph learning (FGL) enables collaborative training on graph data across multiple clients. With the rise of large language models (LLMs), textual attributes in FGL graphs are gaining attention. Text-attributed graph federated learning (TAG-FGL) improves FGL by explicitly leveraging LLMs to process and integrate these textual features. However, current TAG-FGL methods face three main challenges: \textbf{(1) Overhead.} LLMs for processing long texts incur high token and computation costs. To make TAG-FGL practical, we introduce graph condensation (GC) to reduce computation load, but this choice also brings new issues. \textbf{(2) Suboptimal.} To reduce LLM overhead, we introduce GC into TAG-FGL by compressing multi-hop texts/neighborhoods into a condensed core with fixed LLM surrogates. However, this one-shot condensation is often not client-adaptive, leading to suboptimal performance. \textbf{(3) Interpretability.} LLM-based condensation further introduces a black-box bottleneck: summaries lack faithful attribution and clear grounding to specific source spans, making local inspection and auditing difficult. To address the above issues, we propose \textbf{DANCE}, a new TAG-FGL paradigm with GC. To improve \textbf{suboptimal} performance, DANCE performs round-wise, model-in-the-loop condensation refresh using the latest global model. To enhance \textbf{interpretability}, DANCE preserves provenance by storing locally inspectable evidence packs that trace predictions to selected neighbors and source text spans. Across 8 TAG datasets, DANCE improves accuracy by \textbf{2.33\%} at an \textbf{8\%} condensation ratio, with \textbf{33.42\%} fewer tokens than baselines.
Abstract:Federated graph learning (FGL) enables collaborative training of graph neural networks (GNNs) across decentralized subgraphs without exposing raw data. While existing FGL methods often achieve high overall accuracy, we show that this average performance can conceal severe degradation on disadvantaged node groups. From a fairness perspective, these disparities arise systematically from three coupled sources: label skew toward majority patterns, topology confounding in message propagation, and aggregation dilution of updates from hard clients. To address this, we propose \textbf{BoostFGL}, a boosting-style framework for fairness-aware FGL. BoostFGL introduces three coordinated mechanisms: \ding{182} \emph{Client-side node boosting}, which reshapes local training signals to emphasize systematically under-served nodes; \ding{183} \emph{Client-side topology boosting}, which reallocates propagation emphasis toward reliable yet underused structures and attenuates misleading neighborhoods; and \ding{184} \emph{Server-side model boosting}, which performs difficulty- and reliability-aware aggregation to preserve informative updates from hard clients while stabilizing the global model. Extensive experiments on 9 datasets show that BoostFGL delivers substantial fairness gains, improving Overall-F1 by 8.43\%, while preserving competitive overall performance against strong FGL baselines.
Abstract:Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
Abstract:Agentic systems have recently become the dominant paradigm for formal theorem proving, achieving strong performance by coordinating multiple models and tools. However, existing approaches often rely on task-specific pipelines and trained formal provers, limiting their flexibility and reproducibility. In this paper, we propose the paradigm that directly uses a general coding agent as a formal math reasoner. This paradigm is motivated by (1) A general coding agent provides a natural interface for diverse reasoning tasks beyond proving, (2) Performance can be improved by simply replacing the underlying base model, without training, and (3) MCP enables flexible extension and autonomous calling of specialized tools, avoiding complex design. Based on this paradigm, we introduce Numina-Lean-Agent, which combines Claude Code with Numina-Lean-MCP to enable autonomous interaction with Lean, retrieval of relevant theorems, informal proving and auxiliary reasoning tools. Using Claude Opus 4.5 as the base model, Numina-Lean-Agent solves all problems in Putnam 2025 (12 / 12), matching the best closed-source system. Beyond benchmark evaluation, we further demonstrate its generality by interacting with mathematicians to successfully formalize the Brascamp-Lieb theorem. We release Numina-Lean-Agent and all solutions at https://github.com/project-numina/numina-lean-agent.