Abstract:Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
Abstract:While Text-to-SQL remains the dominant approach for database interaction, real-world analytics increasingly require the flexibility of general-purpose programming languages such as Python or Pandas to manage file-based data and complex analytical workflows. Despite this growing need, the reliability of Text-to-Python in core data retrieval remains underexplored relative to the mature SQL ecosystem. To address this gap, we introduce BIRD-Python, a benchmark designed for cross-paradigm evaluation. We systematically refined the original dataset to reduce annotation noise and align execution semantics, thereby establishing a consistent and standardized baseline for comparison. Our analysis reveals a fundamental paradigmatic divergence: whereas SQL leverages implicit DBMS behaviors through its declarative structure, Python requires explicit procedural logic, making it highly sensitive to underspecified user intent. To mitigate this challenge, we propose the Logic Completion Framework (LCF), which resolves ambiguity by incorporating latent domain knowledge into the generation process. Experimental results show that (1) performance differences primarily stem from missing domain context rather than inherent limitations in code generation, and (2) when these gaps are addressed, Text-to-Python achieves performance parity with Text-to-SQL. These findings establish Python as a viable foundation for analytical agents-provided that systems effectively ground ambiguous natural language inputs in executable logical specifications. Resources are available at https://anonymous.4open.science/r/Bird-Python-43B7/.
Abstract:Extracting human motion from large-scale web videos offers a scalable solution to the data scarcity issue in character animation. However, some human parts in many video frames cannot be seen due to off-screen captures or occlusions. It brings a dilemma: discarding the data missing any part limits scale and diversity, while retaining it compromises data quality and model performance. To address this problem, we propose leveraging credible part-level data extracted from videos to enhance motion generation via a robust part-aware masked autoregression model. First, we decompose a human body into five parts and detect the parts clearly seen in a video frame as "credible". Second, the credible parts are encoded into latent tokens by our proposed part-aware variational autoencoder. Third, we propose a robust part-level masked generation model to predict masked credible parts, while ignoring those noisy parts. In addition, we contribute K700-M, a challenging new benchmark comprising approximately 200k real-world motion sequences, for evaluation. Experimental results indicate that our method successfully outperforms baselines on both clean and noisy datasets in terms of motion quality, semantic consistency and diversity. Project page: https://boyuaner.github.io/ropar-main/
Abstract:This work is concerned with the coordination gain in integrated sensing and communication (ISAC) systems under a compress-and-estimate (CE) framework, wherein inference performance is leveraged as the key metric. To enable tractable transceiver design and resource optimization, we characterize inference performance via an error probability bound as a monotonic function of the discriminant gain (DG). This raises the natural question of whether maximizing DG, rather than minimizing mean squared error (MSE), can yield better inference performance. Closed-form solutions for DG-optimal and MSE-optimal transceiver designs are derived, revealing water-filling-type structures and explicit sensing and communication (S\&C) tradeoff. Numerical experiments confirm that DG-optimal design achieves more power-efficient transmission, especially in the low signal-to-noise ratio (SNR) regime, by selectively allocating power to informative features and thus saving transmit power for sensing.
Abstract:Human motion generation has emerged as a critical technology with transformative potential for real-world applications. However, existing vision-language-motion models (VLMMs) face significant limitations that hinder their practical deployment. We identify controllability as a main bottleneck, manifesting in five key aspects: inadequate response to diverse human commands, limited pose initialization capabilities, poor performance on long-term sequences, insufficient handling of unseen scenarios, and lack of fine-grained control over individual body parts. To overcome these limitations, we present Being-M0.5, the first real-time, controllable VLMM that achieves state-of-the-art performance across multiple motion generation tasks. Our approach is built upon HuMo100M, the largest and most comprehensive human motion dataset to date, comprising over 5 million self-collected motion sequences, 100 million multi-task instructional instances, and detailed part-level annotations that address a critical gap in existing datasets. We introduce a novel part-aware residual quantization technique for motion tokenization that enables precise, granular control over individual body parts during generation. Extensive experimental validation demonstrates Being-M0.5's superior performance across diverse motion benchmarks, while comprehensive efficiency analysis confirms its real-time capabilities. Our contributions include design insights and detailed computational analysis to guide future development of practical motion generators. We believe that HuMo100M and Being-M0.5 represent significant advances that will accelerate the adoption of motion generation technologies in real-world applications. The project page is available at https://beingbeyond.github.io/Being-M0.5.
Abstract:Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.
Abstract:Temporal Betweenness Centrality (TBC) measures how often a node appears on optimal temporal paths, reflecting its importance in temporal networks. However, exact computation is highly expensive, and real-world TBC distributions are extremely imbalanced. The severe imbalance leads learning-based models to overfit to zero-centrality nodes, resulting in inaccurate TBC predictions and failure to identify truly central nodes. Existing graph neural network (GNN) methods either fail to handle such imbalance or ignore temporal dependencies altogether. To address these issues, we propose a scalable and inductive contrastive learning-based GNN (CLGNN) for accurate and efficient TBC prediction. CLGNN builds an instance graph to preserve path validity and temporal order, then encodes structural and temporal features using dual aggregation, i.e., mean and edge-to-node multi-head attention mechanisms, enhanced by temporal path count and time encodings. A stability-based clustering-guided contrastive module (KContrastNet) is introduced to separate high-, median-, and low-centrality nodes in representation space, mitigating class imbalance, while a regression module (ValueNet) estimates TBC values. CLGNN also supports multiple optimal path definitions to accommodate diverse temporal semantics. Extensive experiments demonstrate the effectiveness and efficiency of CLGNN across diverse benchmarks. CLGNN achieves up to a 663.7~$\times$ speedup compared to state-of-the-art exact TBC computation methods. It outperforms leading static GNN baselines with up to 31.4~$\times$ lower MAE and 16.7~$\times$ higher Spearman correlation, and surpasses state-of-the-art temporal GNNs with up to 5.7~$\times$ lower MAE and 3.9~$\times$ higher Spearman correlation.
Abstract:Differential Privacy (DP) is a widely adopted technique, valued for its effectiveness in protecting the privacy of task-specific datasets, making it a critical tool for large language models. However, its effectiveness in Multimodal Large Language Models (MLLMs) remains uncertain. Applying Differential Privacy (DP) inherently introduces substantial computation overhead, a concern particularly relevant for MLLMs which process extensive textual and visual data. Furthermore, a critical challenge of DP is that the injected noise, necessary for privacy, scales with parameter dimensionality, leading to pronounced model degradation; This trade-off between privacy and utility complicates the application of Differential Privacy (DP) to complex architectures like MLLMs. To address these, we propose Dual-Priv Pruning, a framework that employs two complementary pruning mechanisms for DP fine-tuning in MLLMs: (i) visual token pruning to reduce input dimensionality by removing redundant visual information, and (ii) gradient-update pruning during the DP optimization process. This second mechanism selectively prunes parameter updates based on the magnitude of noisy gradients, aiming to mitigate noise impact and improve utility. Experiments demonstrate that our approach achieves competitive results with minimal performance degradation. In terms of computational efficiency, our approach consistently utilizes less memory than standard DP-SGD. While requiring only 1.74% more memory than zeroth-order methods which suffer from severe performance issues on A100 GPUs, our method demonstrates leading memory efficiency on H20 GPUs. To the best of our knowledge, we are the first to explore DP fine-tuning in MLLMs. Our code is coming soon.
Abstract:Process mining aims to discover, monitor and optimize the actual behaviors of real processes. While prior work has mainly focused on extracting procedural action flows from instructional texts, rule flows embedded in business documents remain underexplored. To this end, we introduce a novel annotated Chinese dataset, BPRF, which contains 50 business process documents with 326 explicitly labeled business rules across multiple domains. Each rule is represented as a <Condition, Action> pair, and we annotate logical dependencies between rules (sequential, conditional, or parallel). We also propose ExIde, a framework for automatic business rule extraction and dependency relationship identification using large language models (LLMs). We evaluate ExIde using 12 state-of-the-art (SOTA) LLMs on the BPRF dataset, benchmarking performance on both rule extraction and dependency classification tasks of current LLMs. Our results demonstrate the effectiveness of ExIde in extracting structured business rules and analyzing their interdependencies for current SOTA LLMs, paving the way for more automated and interpretable business process automation.
Abstract:Process mining aims to discover, monitor and optimize the actual behaviors of real processes. While prior work has mainly focused on extracting procedural action flows from instructional texts, rule flows embedded in business documents remain underexplored. To this end, we introduce a novel annotated Chinese dataset, \textbf{BPRF}, which contains 50 business process documents with 326 explicitly labeled business rules across multiple domains. Each rule is represented as a <Condition, Action> pair, and we annotate logical dependencies between rules (sequential, conditional, or parallel). We also propose \textbf{ExIde}, a framework for automatic business rule extraction and dependency relationship identification using large language models (LLMs). We evaluate ExIde using 12 state-of-the-art (SOTA) LLMs on the BPRF dataset, benchmarking performance on both rule extraction and dependency classification tasks of current LLMs. Our results demonstrate the effectiveness of ExIde in extracting structured business rules and analyzing their interdependencies for current SOTA LLMs, paving the way for more automated and interpretable business process automation.