Abstract:3D referring segmentation is an emerging and challenging vision-language task that aims to segment the object described by a natural language expression in a point cloud scene. The key challenge behind this task is vision-language feature fusion and alignment. In this work, we propose RefMask3D to explore the comprehensive multi-modal feature interaction and understanding. First, we propose a Geometry-Enhanced Group-Word Attention to integrate language with geometrically coherent sub-clouds through cross-modal group-word attention, which effectively addresses the challenges posed by the sparse and irregular nature of point clouds. Then, we introduce a Linguistic Primitives Construction to produce semantic primitives representing distinct semantic attributes, which greatly enhance the vision-language understanding at the decoding stage. Furthermore, we introduce an Object Cluster Module that analyzes the interrelationships among linguistic primitives to consolidate their insights and pinpoint common characteristics, helping to capture holistic information and enhance the precision of target identification. The proposed RefMask3D achieves new state-of-the-art performance on 3D referring segmentation, 3D visual grounding, and also 2D referring image segmentation. Especially, RefMask3D outperforms previous state-of-the-art method by a large margin of 3.16% mIoU} on the challenging ScanRefer dataset. Code is available at https://github.com/heshuting555/RefMask3D.
Abstract:Despite significant progress in 3D point cloud segmentation, existing methods primarily address specific tasks and depend on explicit instructions to identify targets, lacking the capability to infer and understand implicit user intentions in a unified framework. In this work, we propose a model, called SegPoint, that leverages the reasoning capabilities of a multi-modal Large Language Model (LLM) to produce point-wise segmentation masks across a diverse range of tasks: 1) 3D instruction segmentation, 2) 3D referring segmentation, 3) 3D semantic segmentation, and 4) 3D open-vocabulary semantic segmentation. To advance 3D instruction research, we introduce a new benchmark, Instruct3D, designed to evaluate segmentation performance from complex and implicit instructional texts, featuring 2,565 point cloud-instruction pairs. Our experimental results demonstrate that SegPoint achieves competitive performance on established benchmarks such as ScanRefer for referring segmentation and ScanNet for semantic segmentation, while delivering outstanding outcomes on the Instruct3D dataset. To our knowledge, SegPoint is the first model to address these varied segmentation tasks within a single framework, achieving satisfactory performance.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:This study employs cutting-edge wearable monitoring technology to conduct high-precision, high-temporal-resolution cognitive load assessment on EEG data from the FP1 channel and heart rate variability (HRV) data of secondary vocational students(SVS). By jointly analyzing these two critical physiological indicators, the research delves into their application value in assessing cognitive load among SVS students and their utility across various tasks. The study designed two experiments to validate the efficacy of the proposed approach: Initially, a random forest classification model, developed using the N-BACK task, enabled the precise decoding of physiological signal characteristics in SVS students under different levels of cognitive load, achieving a classification accuracy of 97%. Subsequently, this classification model was applied in a cross-task experiment involving the National Computer Rank Examination, demonstrating the method's significant applicability and cross-task transferability in diverse learning contexts. Conducted with high portability, this research holds substantial theoretical and practical significance for optimizing teaching resource allocation in secondary vocational education, as well as for cognitive load assessment methods and monitoring. Currently, the research findings are undergoing trial implementation in the school.
Abstract:Referring video segmentation relies on natural language expressions to identify and segment objects, often emphasizing motion clues. Previous works treat a sentence as a whole and directly perform identification at the video-level, mixing up static image-level cues with temporal motion cues. However, image-level features cannot well comprehend motion cues in sentences, and static cues are not crucial for temporal perception. In fact, static cues can sometimes interfere with temporal perception by overshadowing motion cues. In this work, we propose to decouple video-level referring expression understanding into static and motion perception, with a specific emphasis on enhancing temporal comprehension. Firstly, we introduce an expression-decoupling module to make static cues and motion cues perform their distinct role, alleviating the issue of sentence embeddings overlooking motion cues. Secondly, we propose a hierarchical motion perception module to capture temporal information effectively across varying timescales. Furthermore, we employ contrastive learning to distinguish the motions of visually similar objects. These contributions yield state-of-the-art performance across five datasets, including a remarkable $\textbf{9.2%}$ $\mathcal{J\&F}$ improvement on the challenging $\textbf{MeViS}$ dataset. Code is available at https://github.com/heshuting555/DsHmp.
Abstract:Tracking by natural language specification (TNL) aims to consistently localize a target in a video sequence given a linguistic description in the initial frame. Existing methodologies perform language-based and template-based matching for target reasoning separately and merge the matching results from two sources, which suffer from tracking drift when language and visual templates miss-align with the dynamic target state and ambiguity in the later merging stage. To tackle the issues, we propose a joint multi-modal tracking framework with 1) a prompt modulation module to leverage the complementarity between temporal visual templates and language expressions, enabling precise and context-aware appearance and linguistic cues, and 2) a unified target decoding module to integrate the multi-modal reference cues and executes the integrated queries on the search image to predict the target location in an end-to-end manner directly. This design ensures spatio-temporal consistency by leveraging historical visual information and introduces an integrated solution, generating predictions in a single step. Extensive experiments conducted on TNL2K, OTB-Lang, LaSOT, and RefCOCOg validate the efficacy of our proposed approach. The results demonstrate competitive performance against state-of-the-art methods for both tracking and grounding.
Abstract:Text-based Person Search (TBPS) aims to retrieve images of target pedestrian indicated by textual descriptions. It is essential for TBPS to extract fine-grained local features and align them crossing modality. Existing methods utilize external tools or heavy cross-modal interaction to achieve explicit alignment of cross-modal fine-grained features, which is inefficient and time-consuming. In this work, we propose a Vision-Guided Semantic-Group Network (VGSG) for text-based person search to extract well-aligned fine-grained visual and textual features. In the proposed VGSG, we develop a Semantic-Group Textual Learning (SGTL) module and a Vision-guided Knowledge Transfer (VGKT) module to extract textual local features under the guidance of visual local clues. In SGTL, in order to obtain the local textual representation, we group textual features from the channel dimension based on the semantic cues of language expression, which encourages similar semantic patterns to be grouped implicitly without external tools. In VGKT, a vision-guided attention is employed to extract visual-related textual features, which are inherently aligned with visual cues and termed vision-guided textual features. Furthermore, we design a relational knowledge transfer, including a vision-language similarity transfer and a class probability transfer, to adaptively propagate information of the vision-guided textual features to semantic-group textual features. With the help of relational knowledge transfer, VGKT is capable of aligning semantic-group textual features with corresponding visual features without external tools and complex pairwise interaction. Experimental results on two challenging benchmarks demonstrate its superiority over state-of-the-art methods.
Abstract:Person Re-identification (ReID) plays a more and more crucial role in recent years with a wide range of applications. Existing ReID methods are suffering from the challenges of misalignment and occlusions, which degrade the performance dramatically. Most methods tackle such challenges by utilizing external tools to locate body parts or exploiting matching strategies. Nevertheless, the inevitable domain gap between the datasets utilized for external tools and the ReID datasets and the complicated matching process make these methods unreliable and sensitive to noises. In this paper, we propose a Region Generation and Assessment Network (RGANet) to effectively and efficiently detect the human body regions and highlight the important regions. In the proposed RGANet, we first devise a Region Generation Module (RGM) which utilizes the pre-trained CLIP to locate the human body regions using semantic prototypes extracted from text descriptions. Learnable prompt is designed to eliminate domain gap between CLIP datasets and ReID datasets. Then, to measure the importance of each generated region, we introduce a Region Assessment Module (RAM) that assigns confidence scores to different regions and reduces the negative impact of the occlusion regions by lower scores. The RAM consists of a discrimination-aware indicator and an invariance-aware indicator, where the former indicates the capability to distinguish from different identities and the latter represents consistency among the images of the same class of human body regions. Extensive experimental results for six widely-used benchmarks including three tasks (occluded, partial, and holistic) demonstrate the superiority of RGANet against state-of-the-art methods.
Abstract:The objective of Classic Referring Expression Comprehension (REC) is to produce a bounding box corresponding to the object mentioned in a given textual description. Commonly, existing datasets and techniques in classic REC are tailored for expressions that pertain to a single target, meaning a sole expression is linked to one specific object. Expressions that refer to multiple targets or involve no specific target have not been taken into account. This constraint hinders the practical applicability of REC. This study introduces a new benchmark termed as Generalized Referring Expression Comprehension (GREC). This benchmark extends the classic REC by permitting expressions to describe any number of target objects. To achieve this goal, we have built the first large-scale GREC dataset named gRefCOCO. This dataset encompasses a range of expressions: those referring to multiple targets, expressions with no specific target, and the single-target expressions. The design of GREC and gRefCOCO ensures smooth compatibility with classic REC. The proposed gRefCOCO dataset, a GREC method implementation code, and GREC evaluation code are available at https://github.com/henghuiding/gRefCOCO.
Abstract:This paper strives for motion expressions guided video segmentation, which focuses on segmenting objects in video content based on a sentence describing the motion of the objects. Existing referring video object datasets typically focus on salient objects and use language expressions that contain excessive static attributes that could potentially enable the target object to be identified in a single frame. These datasets downplay the importance of motion in video content for language-guided video object segmentation. To investigate the feasibility of using motion expressions to ground and segment objects in videos, we propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments. We benchmarked 5 existing referring video object segmentation (RVOS) methods and conducted a comprehensive comparison on the MeViS dataset. The results show that current RVOS methods cannot effectively address motion expression-guided video segmentation. We further analyze the challenges and propose a baseline approach for the proposed MeViS dataset. The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms that leverage motion expressions as a primary cue for object segmentation in complex video scenes. The proposed MeViS dataset has been released at https://henghuiding.github.io/MeViS.