Sherman
Abstract:In this paper, we aim to transfer CLIP's robust 2D generalization capabilities to identify 3D anomalies across unseen objects of highly diverse class semantics. To this end, we propose a unified framework to comprehensively detect and segment 3D anomalies by leveraging both point- and pixel-level information. We first design PointAD, which leverages point-pixel correspondence to represent 3D anomalies through their associated rendering pixel representations. This approach is referred to as implicit 3D representation, as it focuses solely on rendering pixel anomalies but neglects the inherent spatial relationships within point clouds. Then, we propose PointAD+ to further broaden the interpretation of 3D anomalies by introducing explicit 3D representation, emphasizing spatial abnormality to uncover abnormal spatial relationships. Hence, we propose G-aggregation to involve geometry information to enable the aggregated point representations spatially aware. To simultaneously capture rendering and spatial abnormality, PointAD+ proposes hierarchical representation learning, incorporating implicit and explicit anomaly semantics into hierarchical text prompts: rendering prompts for the rendering layer and geometry prompts for the geometry layer. A cross-hierarchy contrastive alignment is further introduced to promote the interaction between the rendering and geometry layers, facilitating mutual anomaly learning. Finally, PointAD+ integrates anomaly semantics from both layers to capture the generalized anomaly semantics. During the test, PointAD+ can integrate RGB information in a plug-and-play manner and further improve its detection performance. Extensive experiments demonstrate the superiority of PointAD+ in ZS 3D anomaly detection across unseen objects with highly diverse class semantics, achieving a holistic understanding of abnormality.
Abstract:Achieving human-like dexterous robotic manipulation remains a central goal and a pivotal challenge in robotics. The development of Artificial Intelligence (AI) has allowed rapid progress in robotic manipulation. This survey summarizes the evolution of robotic manipulation from mechanical programming to embodied intelligence, alongside the transition from simple grippers to multi-fingered dexterous hands, outlining key characteristics and main challenges. Focusing on the current stage of embodied dexterous manipulation, we highlight recent advances in two critical areas: dexterous manipulation data collection (via simulation, human demonstrations, and teleoperation) and skill-learning frameworks (imitation and reinforcement learning). Then, based on the overview of the existing data collection paradigm and learning framework, three key challenges restricting the development of dexterous robotic manipulation are summarized and discussed.
Abstract:As semantic communication (SemCom) attracts growing attention as a novel communication paradigm, ensuring the security of transmitted semantic information over open wireless channels has become a critical issue. However, traditional encryption methods often introduce significant additional communication overhead to maintain stability, and conventional learning-based secure SemCom methods typically rely on a channel capacity advantage for the legitimate receiver, which is challenging to guarantee in real-world scenarios. In this paper, we propose a coding-enhanced jamming method that eliminates the need to transmit a secret key by utilizing shared knowledge-potentially part of the training set of the SemCom system-between the legitimate receiver and the transmitter. Specifically, we leverage the shared private knowledge base to generate a set of private digital codebooks in advance using neural network (NN)-based encoders. For each transmission, we encode the transmitted data into digital sequence Y1 and associate Y1 with a sequence randomly picked from the private codebook, denoted as Y2, through superposition coding. Here, Y1 serves as the outer code and Y2 as the inner code. By optimizing the power allocation between the inner and outer codes, the legitimate receiver can reconstruct the transmitted data using successive decoding with the index of Y2 shared, while the eavesdropper' s decoding performance is severely degraded, potentially to the point of random guessing. Experimental results demonstrate that our method achieves comparable security to state-of-the-art approaches while significantly improving the reconstruction performance of the legitimate receiver by more than 1 dB across varying channel signal-to-noise ratios (SNRs) and compression ratios.
Abstract:As semantic communication (SemCom) emerges as a promising communication paradigm, ensuring the security of semantic information over open wireless channels has become crucial. Traditional encryption methods introduce considerable communication overhead, while existing learning-based secure SemCom schemes often rely on a channel capacity advantage for the legitimate receiver, which is challenging to guarantee in practice. In this paper, we propose a coding-enhanced jamming approach that eliminates the need to transmit a secret key by utilizing shared knowledge between the legitimate receiver and the transmitter. We generate private codebooks with neural network (NN)-based encoders, using them to encode data into a sequence Y1, which is then superposed with a sequence Y2 drawn from the private codebook. By optimizing the power allocation between the two sequences, the legitimate receiver can successfully decode the data, while the eavesdropper' s performance is significantly degraded, potentially to the point of random guessing. Experimental results demonstrate that our method achieves comparable security to state-of-the-art approaches while significantly improving the reconstruction performance of the legitimate receiver by more than 1 dB across varying channel signal-to-noise ratios (SNRs) and compression ratios.
Abstract:As semantic communication (SemCom) gains increasing attention as a novel communication paradigm, ensuring the security of transmitted semantic information over open wireless channels becomes crucial. Existing secure SemCom solutions often lack explicit control over security. To address this, we propose a coding-enhanced jamming approach for secure SemCom over wiretap channels. This approach integrates deep joint source and channel coding (DeepJSCC) with neural network-based digital modulation, enabling controlled jamming through two-layer superposition coding. The outer constellation sequence encodes the source image, while the inner constellation sequence, derived from a secret image, acts as the jamming signal. By minimizing the mutual information between the outer and inner constellation sequences, the jamming effect is enhanced. The jamming signal is superposed on the outer constellation sequence, preventing the eavesdropper from recovering the source image. The power allocation coefficient (PAC) in the superposition coding can be adjusted to control system security. Experiments show that our approach matches existing methods in security while significantly improving reconstruction performance across varying channel signal-to-noise ratios (SNRs) and compression ratios.
Abstract:Text-to-image models based on diffusion processes, such as DALL-E, Stable Diffusion, and Midjourney, are capable of transforming texts into detailed images and have widespread applications in art and design. As such, amateur users can easily imitate professional-level paintings by collecting an artist's work and fine-tuning the model, leading to concerns about artworks' copyright infringement. To tackle these issues, previous studies either add visually imperceptible perturbation to the artwork to change its underlying styles (perturbation-based methods) or embed post-training detectable watermarks in the artwork (watermark-based methods). However, when the artwork or the model has been published online, i.e., modification to the original artwork or model retraining is not feasible, these strategies might not be viable. To this end, we propose a novel method for data-use auditing in the text-to-image generation model. The general idea of ArtistAuditor is to identify if a suspicious model has been finetuned using the artworks of specific artists by analyzing the features related to the style. Concretely, ArtistAuditor employs a style extractor to obtain the multi-granularity style representations and treats artworks as samplings of an artist's style. Then, ArtistAuditor queries a trained discriminator to gain the auditing decisions. The experimental results on six combinations of models and datasets show that ArtistAuditor can achieve high AUC values (> 0.937). By studying ArtistAuditor's transferability and core modules, we provide valuable insights into the practical implementation. Finally, we demonstrate the effectiveness of ArtistAuditor in real-world cases by an online platform Scenario. ArtistAuditor is open-sourced at https://github.com/Jozenn/ArtistAuditor.
Abstract:Bimanual dexterous manipulation remains significant challenges in robotics due to the high DoFs of each hand and their coordination. Existing single-hand manipulation techniques often leverage human demonstrations to guide RL methods but fail to generalize to complex bimanual tasks involving multiple sub-skills. In this paper, we introduce VTAO-BiManip, a novel framework that combines visual-tactile-action pretraining with object understanding to facilitate curriculum RL to enable human-like bimanual manipulation. We improve prior learning by incorporating hand motion data, providing more effective guidance for dual-hand coordination than binary tactile feedback. Our pretraining model predicts future actions as well as object pose and size using masked multimodal inputs, facilitating cross-modal regularization. To address the multi-skill learning challenge, we introduce a two-stage curriculum RL approach to stabilize training. We evaluate our method on a bottle-cap unscrewing task, demonstrating its effectiveness in both simulated and real-world environments. Our approach achieves a success rate that surpasses existing visual-tactile pretraining methods by over 20%.
Abstract:Implicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction. Recent studies have expanded their applications in autonomous reconstruction through task assignment methods. However, these methods are mainly limited to single robot, and rapid reconstruction of large-scale scenes remains challenging. Additionally, task-driven planning based on surface uncertainty is prone to being trapped in local optima. To this end, we propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework. To further reduce time cost of task generation and improve reconstruction quality, we integrate online open-vocabulary semantic segmentation with surface uncertainty of 3DGS, focusing view sampling on regions with high instance uncertainty. Finally, we develop a multi-robot collaboration strategy with mode and task assignments improving reconstruction quality while ensuring planning efficiency. Our method demonstrates the highest reconstruction quality among all planning methods and superior planning efficiency compared to existing multi-robot methods. We deploy our method on multiple robots, and results show that it can effectively plan view paths and reconstruct scenes with high quality.
Abstract:Object detection is a fundamental enabler for many real-time downstream applications such as autonomous driving, augmented reality and supply chain management. However, the algorithmic backbone of neural networks is brittle to imperceptible perturbations in the system inputs, which were generally known as misclassifying attacks. By targeting the real-time processing capability, a new class of latency attacks are reported recently. They exploit new attack surfaces in object detectors by creating a computational bottleneck in the post-processing module, that leads to cascading failure and puts the real-time downstream tasks at risks. In this work, we take an initial attempt to defend against this attack via background-attentive adversarial training that is also cognizant of the underlying hardware capabilities. We first draw system-level connections between latency attack and hardware capacity across heterogeneous GPU devices. Based on the particular adversarial behaviors, we utilize objectness loss as a proxy and build background attention into the adversarial training pipeline, and achieve a reasonable balance between clean and robust accuracy. The extensive experiments demonstrate the defense effectiveness of restoring real-time processing capability from $13$ FPS to $43$ FPS on Jetson Orin NX, with a better trade-off between the clean and robust accuracy.
Abstract:Condensing large datasets into smaller synthetic counterparts has demonstrated its promise for image classification. However, previous research has overlooked a crucial concern in image recognition: ensuring that models trained on condensed datasets are unbiased towards protected attributes (PA), such as gender and race. Our investigation reveals that dataset distillation (DD) fails to alleviate the unfairness towards minority groups within original datasets. Moreover, this bias typically worsens in the condensed datasets due to their smaller size. To bridge the research gap, we propose a novel fair dataset distillation (FDD) framework, namely FairDD, which can be seamlessly applied to diverse matching-based DD approaches, requiring no modifications to their original architectures. The key innovation of FairDD lies in synchronously matching synthetic datasets to PA-wise groups of original datasets, rather than indiscriminate alignment to the whole distributions in vanilla DDs, dominated by majority groups. This synchronized matching allows synthetic datasets to avoid collapsing into majority groups and bootstrap their balanced generation to all PA groups. Consequently, FairDD could effectively regularize vanilla DDs to favor biased generation toward minority groups while maintaining the accuracy of target attributes. Theoretical analyses and extensive experimental evaluations demonstrate that FairDD significantly improves fairness compared to vanilla DD methods, without sacrificing classification accuracy. Its consistent superiority across diverse DDs, spanning Distribution and Gradient Matching, establishes it as a versatile FDD approach.