Abstract:Heterogeneity is a fundamental property in multi-agent reinforcement learning (MARL), which is closely related not only to the functional differences of agents, but also to policy diversity and environmental interactions. However, the MARL field currently lacks a rigorous definition and deeper understanding of heterogeneity. This paper systematically discusses heterogeneity in MARL from the perspectives of definition, quantification, and utilization. First, based on an agent-level modeling of MARL, we categorize heterogeneity into five types and provide mathematical definitions. Second, we define the concept of heterogeneity distance and propose a practical quantification method. Third, we design a heterogeneity-based multi-agent dynamic parameter sharing algorithm as an example of the application of our methodology. Case studies demonstrate that our method can effectively identify and quantify various types of agent heterogeneity. Experimental results show that the proposed algorithm, compared to other parameter sharing baselines, has better interpretability and stronger adaptability. The proposed methodology will help the MARL community gain a more comprehensive and profound understanding of heterogeneity, and further promote the development of practical algorithms.
Abstract:Radio path loss prediction (RPP) is critical for optimizing 5G networks and enabling IoT, smart city, and similar applications. However, current deep learning-based RPP methods lack proactive environmental modeling, struggle with realistic multi-transmitter scenarios, and generalize poorly under distribution shifts, particularly when training/testing environments differ in building density or transmitter configurations. This paper identifies three key issues: (1) passive environmental modeling that overlooks transmitters and key environmental features; (2) overemphasis on single-transmitter scenarios despite real-world multi-transmitter prevalence; (3) excessive focus on in-distribution performance while neglecting distribution shift challenges. To address these, we propose PathFinder, a novel architecture that actively models buildings and transmitters via disentangled feature encoding and integrates Mask-Guided Low-rank Attention to independently focus on receiver and building regions. We also introduce a Transmitter-Oriented Mixup strategy for robust training and a new benchmark, single-to-multi-transmitter RPP (S2MT-RPP), tailored to evaluate extrapolation performance (multi-transmitter testing after single-transmitter training). Experimental results show PathFinder outperforms state-of-the-art methods significantly, especially in challenging multi-transmitter scenarios. Our code and project site are available at: https://emorzz1g.github.io/PathFinder/.
Abstract:Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods. In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model's behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.
Abstract:Automatic sleep staging plays a vital role in assessing sleep quality and diagnosing sleep disorders. Most existing methods rely heavily on long and continuous EEG recordings, which poses significant challenges for data acquisition in resource-constrained systems, such as wearable or home-based monitoring systems. In this paper, we propose the task of resource-efficient sleep staging, which aims to reduce the amount of signal collected per sleep epoch while maintaining reliable classification performance. To solve this task, we adopt the masking and prompt learning strategy and propose a novel framework called Mask-Aware Sleep Staging (MASS). Specifically, we design a multi-level masking strategy to promote effective feature modeling under partial and irregular observations. To mitigate the loss of contextual information introduced by masking, we further propose a hierarchical prompt learning mechanism that aggregates unmasked data into a global prompt, serving as a semantic anchor for guiding both patch-level and epoch-level feature modeling. MASS is evaluated on four datasets, demonstrating state-of-the-art performance, especially when the amount of data is very limited. This result highlights its potential for efficient and scalable deployment in real-world low-resource sleep monitoring environments.
Abstract:Quantum imaginary time evolution (QITE) algorithm is one of the most promising variational quantum algorithms (VQAs), bridging the current era of Noisy Intermediate-Scale Quantum devices and the future of fully fault-tolerant quantum computing. Although practical demonstrations of QITE and its potential advantages over the general VQA trained with vanilla gradient descent (GD) in certain tasks have been reported, a first-principle, theoretical understanding of QITE remains limited. Here, we aim to develop an analytic theory for the dynamics of QITE. First, we show that QITE can be interpreted as a form of a general VQA trained with Quantum Natural Gradient Descent (QNGD), where the inverse quantum Fisher information matrix serves as the learning-rate tensor. This equivalence is established not only at the level of gradient update rules, but also through the action principle: the variational principle can be directly connected to the geometric geodesic distance in the quantum Fisher information metric, up to an integration constant. Second, for wide quantum neural networks, we employ the quantum neural tangent kernel framework to construct an analytic model for QITE. We prove that QITE always converges faster than GD-based VQA, though this advantage is suppressed by the exponential growth of Hilbert space dimension. This helps explain certain experimental results in quantum computational chemistry. Our theory encompasses linear, quadratic, and more general loss functions. We validate the analytic results through numerical simulations. Our findings establish a theoretical foundation for QITE dynamics and provide analytic insights for the first-principle design of variational quantum algorithms.
Abstract:Nowadays, machine learning (ML) teams have multiple concurrent ML workflows for different applications. Each workflow typically involves many experiments, iterations, and collaborative activities and commonly takes months and sometimes years from initial data wrangling to model deployment. Organizationally, there is a large amount of intermediate data to be stored, processed, and maintained. \emph{Data virtualization} becomes a critical technology in an infrastructure to serve ML workflows. In this paper, we present the design and implementation of a data virtualization service, focusing on its service architecture and service operations. The infrastructure currently supports six ML applications, each with more than one ML workflow. The data virtualization service allows the number of applications and workflows to grow in the coming years.
Abstract:The increasing frequency of extreme weather events due to global climate change urges accurate weather prediction. Recently, great advances have been made by the \textbf{end-to-end methods}, thanks to deep learning techniques, but they face limitations of \textit{representation inconsistency} in multivariable integration and struggle to effectively capture the dependency between variables, which is required in complex weather systems. Treating different variables as distinct modalities and applying a \textbf{two-stage training approach} from multimodal models can partially alleviate this issue, but due to the inconformity in training tasks between the two stages, the results are often suboptimal. To address these challenges, we propose an implicit two-stage training method, configuring separate encoders and decoders for each variable. In detailed, in the first stage, the Translator is frozen while the Encoders and Decoders learn a shared latent space, in the second stage, the Encoders and Decoders are frozen, and the Translator captures inter-variable interactions for prediction. Besides, by introducing a self-attention mechanism for multivariable fusion in the latent space, the performance achieves further improvements. Empirically, extensive experiments show the state-of-the-art performance of our method. Specifically, it reduces the MSE for near-surface air temperature and relative humidity predictions by 28.82\% and 23.39\%, respectively. The source code is available at https://github.com/ShremG/Met2Net.
Abstract:Recent advancements in deep learning have greatly enhanced 3D object recognition, but most models are limited to closed-set scenarios, unable to handle unknown samples in real-world applications. Open-set recognition (OSR) addresses this limitation by enabling models to both classify known classes and identify novel classes. However, current OSR methods rely on global features to differentiate known and unknown classes, treating the entire object uniformly and overlooking the varying semantic importance of its different parts. To address this gap, we propose Salience-Aware Structured Separation (SASep), which includes (i) a tunable semantic decomposition (TSD) module to semantically decompose objects into important and unimportant parts, (ii) a geometric synthesis strategy (GSS) to generate pseudo-unknown objects by combining these unimportant parts, and (iii) a synth-aided margin separation (SMS) module to enhance feature-level separation by expanding the feature distributions between classes. Together, these components improve both geometric and feature representations, enhancing the model's ability to effectively distinguish known and unknown classes. Experimental results show that SASep achieves superior performance in 3D OSR, outperforming existing state-of-the-art methods.
Abstract:In this paper, we introduce GradEscape, the first gradient-based evader designed to attack AI-generated text (AIGT) detectors. GradEscape overcomes the undifferentiable computation problem, caused by the discrete nature of text, by introducing a novel approach to construct weighted embeddings for the detector input. It then updates the evader model parameters using feedback from victim detectors, achieving high attack success with minimal text modification. To address the issue of tokenizer mismatch between the evader and the detector, we introduce a warm-started evader method, enabling GradEscape to adapt to detectors across any language model architecture. Moreover, we employ novel tokenizer inference and model extraction techniques, facilitating effective evasion even in query-only access. We evaluate GradEscape on four datasets and three widely-used language models, benchmarking it against four state-of-the-art AIGT evaders. Experimental results demonstrate that GradEscape outperforms existing evaders in various scenarios, including with an 11B paraphrase model, while utilizing only 139M parameters. We have successfully applied GradEscape to two real-world commercial AIGT detectors. Our analysis reveals that the primary vulnerability stems from disparity in text expression styles within the training data. We also propose a potential defense strategy to mitigate the threat of AIGT evaders. We open-source our GradEscape for developing more robust AIGT detectors.
Abstract:Quantum computing offers theoretical advantages over classical computing for specific tasks, yet the boundary of practical quantum advantage remains an open question. To investigate this boundary, it is crucial to understand whether, and how, classical machines can learn and simulate quantum algorithms. Recent progress in large language models (LLMs) has demonstrated strong reasoning abilities, prompting exploration into their potential for this challenge. In this work, we introduce GroverGPT-2, an LLM-based method for simulating Grover's algorithm using Chain-of-Thought (CoT) reasoning and quantum-native tokenization. Building on its predecessor, GroverGPT-2 performs simulation directly from quantum circuit representations while producing logically structured and interpretable outputs. Our results show that GroverGPT-2 can learn and internalize quantum circuit logic through efficient processing of quantum-native tokens, providing direct evidence that classical models like LLMs can capture the structure of quantum algorithms. Furthermore, GroverGPT-2 outputs interleave circuit data with natural language, embedding explicit reasoning into the simulation. This dual capability positions GroverGPT-2 as a prototype for advancing machine understanding of quantum algorithms and modeling quantum circuit logic. We also identify an empirical scaling law for GroverGPT-2 with increasing qubit numbers, suggesting a path toward scalable classical simulation. These findings open new directions for exploring the limits of classical simulatability, enhancing quantum education and research, and laying groundwork for future foundation models in quantum computing.