Abstract:Multi-modal fusion is imperative to the implementation of reliable object detection and tracking in complex environments. Exploiting the synergy of heterogeneous modal information endows perception systems the ability to achieve more comprehensive, robust, and accurate performance. As a nucleus concern in wireless-vision collaboration, radar-camera fusion has prompted prospective research directions owing to its extensive applicability, complementarity, and compatibility. Nonetheless, there still lacks a systematic survey specifically focusing on deep fusion of radar and camera for object detection and tracking. To fill this void, we embark on an endeavor to comprehensively review radar-camera fusion in a holistic way. First, we elaborate on the fundamental principles, methodologies, and applications of radar-camera fusion perception. Next, we delve into the key techniques concerning sensor calibration, modal representation, data alignment, and fusion operation. Furthermore, we provide a detailed taxonomy covering the research topics related to object detection and tracking in the context of radar and camera technologies.Finally, we discuss the emerging perspectives in the field of radar-camera fusion perception and highlight the potential areas for future research.
Abstract:Practical natural language processing (NLP) tasks are commonly long-tailed with noisy labels. Those problems challenge the generalization and robustness of complex models such as Deep Neural Networks (DNNs). Some commonly used resampling techniques, such as oversampling or undersampling, could easily lead to overfitting. It is growing popular to learn the data weights leveraging a small amount of metadata. Besides, recent studies have shown the advantages of self-supervised pre-training, particularly to the under-represented data. In this work, we propose a general framework to handle the problem of both long-tail and noisy labels. The model is adapted to the domain of problems in a contrastive learning manner. The re-weighting module is a feed-forward network that learns explicit weighting functions and adapts weights according to metadata. The framework further adapts weights of terms in the loss function through a combination of the polynomial expansion of cross-entropy loss and focal loss. Our extensive experiments show that the proposed framework consistently outperforms baseline methods. Lastly, our sensitive analysis emphasizes the capability of the proposed framework to handle the long-tailed problem and mitigate the negative impact of noisy labels.
Abstract:Existing value-factorized based Multi-Agent deep Reinforce-ment Learning (MARL) approaches are well-performing invarious multi-agent cooperative environment under thecen-tralized training and decentralized execution(CTDE) scheme,where all agents are trained together by the centralized valuenetwork and each agent execute its policy independently. How-ever, an issue remains open: in the centralized training process,when the environment for the team is partially observable ornon-stationary, i.e., the observation and action informationof all the agents cannot represent the global states, existingmethods perform poorly and sample inefficiently. Regret Min-imization (RM) can be a promising approach as it performswell in partially observable and fully competitive settings.However, it tends to model others as opponents and thus can-not work well under the CTDE scheme. In this work, wepropose a novel team RM based Bayesian MARL with threekey contributions: (a) we design a novel RM method to traincooperative agents as a team and obtain a team regret-basedpolicy for that team; (b) we introduce a novel method to de-compose the team regret to generate the policy for each agentfor decentralized execution; (c) to further improve the perfor-mance, we leverage a differential particle filter (a SequentialMonte Carlo method) network to get an accurate estimation ofthe state for each agent. Experimental results on two-step ma-trix games (cooperative game) and battle games (large-scalemixed cooperative-competitive games) demonstrate that ouralgorithm significantly outperforms state-of-the-art methods.