Abstract:The sampling of graph signals has recently drawn much attention due to the wide applications of graph signal processing. While a lot of efficient methods and interesting results have been reported to the sampling of band-limited or smooth graph signals, few research has been devoted to non-smooth graph signals, especially to sparse graph signals, which are also of importance in many practical applications. This paper addresses the random sampling of non-smooth graph signals generated by diffusion of sparse inputs. We aim to present a solid theoretical analysis on the random sampling of diffused sparse graph signals, which can be parallel to that of band-limited graph signals, and thus present a sufficient condition to the number of samples ensuring the unique recovery for uniform random sampling. Then, we focus on two classes of widely used binary graph models, and give explicit and tighter estimations on the sampling numbers ensuring unique recovery. We also propose an adaptive variable-density sampling strategy to provide a better performance than uniform random sampling. Finally, simulation experiments are presented to validate the effectiveness of the theoretical results.
Abstract:Implicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction. Recent studies have expanded their applications in autonomous reconstruction through task assignment methods. However, these methods are mainly limited to single robot, and rapid reconstruction of large-scale scenes remains challenging. Additionally, task-driven planning based on surface uncertainty is prone to being trapped in local optima. To this end, we propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework. To further reduce time cost of task generation and improve reconstruction quality, we integrate online open-vocabulary semantic segmentation with surface uncertainty of 3DGS, focusing view sampling on regions with high instance uncertainty. Finally, we develop a multi-robot collaboration strategy with mode and task assignments improving reconstruction quality while ensuring planning efficiency. Our method demonstrates the highest reconstruction quality among all planning methods and superior planning efficiency compared to existing multi-robot methods. We deploy our method on multiple robots, and results show that it can effectively plan view paths and reconstruct scenes with high quality.
Abstract:In this paper, we show that applying adaptive methods directly to distributed minimax problems can result in non-convergence due to inconsistency in locally computed adaptive stepsizes. To address this challenge, we propose D-AdaST, a Distributed Adaptive minimax method with Stepsize Tracking. The key strategy is to employ an adaptive stepsize tracking protocol involving the transmission of two extra (scalar) variables. This protocol ensures the consistency among stepsizes of nodes, eliminating the steady-state error due to the lack of coordination of stepsizes among nodes that commonly exists in vanilla distributed adaptive methods, and thus guarantees exact convergence. For nonconvex-strongly-concave distributed minimax problems, we characterize the specific transient times that ensure time-scale separation of stepsizes and quasi-independence of networks, leading to a near-optimal convergence rate of $\tilde{\mathcal{O}} \left( \epsilon ^{-\left( 4+\delta \right)} \right)$ for any small $\delta > 0$, matching that of the centralized counterpart. To our best knowledge, D-AdaST is the first distributed adaptive method achieving near-optimal convergence without knowing any problem-dependent parameters for nonconvex minimax problems. Extensive experiments are conducted to validate our theoretical results.
Abstract:In this paper, we propose a differentially private decentralized learning method (termed PrivSGP-VR) which employs stochastic gradient push with variance reduction and guarantees $(\epsilon, \delta)$-differential privacy (DP) for each node. Our theoretical analysis shows that, under DP Gaussian noise with constant variance, PrivSGP-VR achieves a sub-linear convergence rate of $\mathcal{O}(1/\sqrt{nK})$, where $n$ and $K$ are the number of nodes and iterations, respectively, which is independent of stochastic gradient variance, and achieves a linear speedup with respect to $n$. Leveraging the moments accountant method, we further derive an optimal $K$ to maximize the model utility under certain privacy budget in decentralized settings. With this optimized $K$, PrivSGP-VR achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}{\delta} \right)}/(\sqrt{n}J\epsilon) \right)$, where $J$ and $d$ are the number of local samples and the dimension of decision variable, respectively, which matches that of the server-client distributed counterparts, and exhibits an extra factor of $1/\sqrt{n}$ improvement compared to that of the existing decentralized counterparts, such as A(DP)$^2$SGD. Extensive experiments corroborate our theoretical findings, especially in terms of the maximized utility with optimized $K$, in fully decentralized settings.
Abstract:The sim-to-real gap poses a significant challenge in RL-based multi-agent exploration due to scene quantization and action discretization. Existing platforms suffer from the inefficiency in sampling and the lack of diversity in Multi-Agent Reinforcement Learning (MARL) algorithms across different scenarios, restraining their widespread applications. To fill these gaps, we propose MAexp, a generic platform for multi-agent exploration that integrates a broad range of state-of-the-art MARL algorithms and representative scenarios. Moreover, we employ point clouds to represent our exploration scenarios, leading to high-fidelity environment mapping and a sampling speed approximately 40 times faster than existing platforms. Furthermore, equipped with an attention-based Multi-Agent Target Generator and a Single-Agent Motion Planner, MAexp can work with arbitrary numbers of agents and accommodate various types of robots. Extensive experiments are conducted to establish the first benchmark featuring several high-performance MARL algorithms across typical scenarios for robots with continuous actions, which highlights the distinct strengths of each algorithm in different scenarios.
Abstract:Autonomous lane-change, a key feature of advanced driver-assistance systems, can enhance traffic efficiency and reduce the incidence of accidents. However, safe driving of autonomous vehicles remains challenging in complex environments. How to perform safe and appropriate lane change is a popular topic of research in the field of autonomous driving. Currently, few papers consider the safety of reinforcement learning in autonomous lane-change scenarios. We introduce safe hybrid-action reinforcement learning into discretionary lane change for the first time and propose Parameterized Soft Actor-Critic with PID Lagrangian (PASAC-PIDLag) algorithm. Furthermore, we conduct a comparative analysis of the Parameterized Soft Actor-Critic (PASAC), which is an unsafe version of PASAC-PIDLag. Both algorithms are employed to train the lane-change strategy of autonomous vehicles to output discrete lane-change decision and longitudinal vehicle acceleration. Our simulation results indicate that at a traffic density of 15 vehicles per kilometer (15 veh/km), the PASAC-PIDLag algorithm exhibits superior safety with a collision rate of 0%, outperforming the PASAC algorithm, which has a collision rate of 1%. The outcomes of the generalization assessments reveal that at low traffic density levels, both the PASAC-PIDLag and PASAC algorithms are proficient in attaining a 0% collision rate. Under conditions of high traffic flow density, the PASAC-PIDLag algorithm surpasses PASAC in terms of both safety and optimality.
Abstract:Perfect synchronization in distributed machine learning problems is inefficient and even impossible due to the existence of latency, package losses and stragglers. We propose a Robust Fully-Asynchronous Stochastic Gradient Tracking method (R-FAST), where each device performs local computation and communication at its own pace without any form of synchronization. Different from existing asynchronous distributed algorithms, R-FAST can eliminate the impact of data heterogeneity across devices and allow for packet losses by employing a robust gradient tracking strategy that relies on properly designed auxiliary variables for tracking and buffering the overall gradient vector. More importantly, the proposed method utilizes two spanning-tree graphs for communication so long as both share at least one common root, enabling flexible designs in communication architectures. We show that R-FAST converges in expectation to a neighborhood of the optimum with a geometric rate for smooth and strongly convex objectives; and to a stationary point with a sublinear rate for general non-convex settings. Extensive experiments demonstrate that R-FAST runs 1.5-2 times faster than synchronous benchmark algorithms, such as Ring-AllReduce and D-PSGD, while still achieving comparable accuracy, and outperforms existing asynchronous SOTA algorithms, such as AD-PSGD and OSGP, especially in the presence of stragglers.
Abstract:We propose a flexible gradient tracking approach with adjustable computation and communication steps for solving distributed stochastic optimization problem over networks. The proposed method allows each node to perform multiple local gradient updates and multiple inter-node communications in each round, aiming to strike a balance between computation and communication costs according to the properties of objective functions and network topology in non-i.i.d. settings. Leveraging a properly designed Lyapunov function, we derive both the computation and communication complexities for achieving arbitrary accuracy on smooth and strongly convex objective functions. Our analysis demonstrates sharp dependence of the convergence performance on graph topology and properties of objective functions, highlighting the trade-off between computation and communication. Numerical experiments are conducted to validate our theoretical findings.
Abstract:Many optimal control problems require the simultaneous output of continuous and discrete control variables. Such problems are usually formulated as mixed-integer optimal control (MIOC) problems, which are challenging to solve due to the complexity of the solution space. Numerical methods such as branch-and-bound are computationally expensive and unsuitable for real-time control. This paper proposes a novel continuous-discrete reinforcement learning (CDRL) algorithm, twin delayed deep deterministic actor-Q (TD3AQ), for MIOC problems. TD3AQ combines the advantages of both actor-critic and Q-learning methods, and can handle the continuous and discrete action spaces simultaneously. The proposed algorithm is evaluated on a hybrid electric vehicle (HEV) energy management problem, where real-time control of the continuous variable engine torque and discrete variable gear ratio is essential to maximize fuel economy while satisfying driving constraints. Simulation results on different drive cycles show that TD3AQ can achieve near-optimal solutions compared to dynamic programming (DP) and outperforms the state-of-the-art discrete RL algorithm Rainbow, which is adopted for MIOC by discretizing continuous actions into a finite set of discrete values.
Abstract:Autonomous drone racing is becoming an excellent platform to challenge quadrotors' autonomy techniques including planning, navigation and control technologies. However, most research on this topic mainly focuses on single drone scenarios. In this paper, we describe a novel time-optimal trajectory generation method for generating time-optimal trajectories for a swarm of quadrotors to fly through pre-defined waypoints with their maximum maneuverability without collision. We verify the method in the Gazebo simulations where a swarm of 5 quadrotors can fly through a complex 6-waypoint racing track in a 35m * 35m space with a top speed of 14m/s. Flight tests are performed on two quadrotors passing through 3 waypoints in a 4m * 2m flight arena to demonstrate the feasibility of the proposed method in the real world. Both simulations and real-world flight tests show that the proposed method can generate the optimal aggressive trajectories for a swarm of autonomous racing drones. The method can also be easily transferred to other types of robot swarms.