Abstract:Millimeter-wave radar plays a vital role in 3D object detection for autonomous driving due to its all-weather and all-lighting-condition capabilities for perception. However, radar point clouds suffer from pronounced sparsity and unavoidable angle estimation errors. To address these limitations, incorporating a camera may partially help mitigate the shortcomings. Nevertheless, the direct fusion of radar and camera data can lead to negative or even opposite effects due to the lack of depth information in images and low-quality image features under adverse lighting conditions. Hence, in this paper, we present the radar-camera fusion network with Hybrid Generation and Synchronization (HGSFusion), designed to better fuse radar potentials and image features for 3D object detection. Specifically, we propose the Radar Hybrid Generation Module (RHGM), which fully considers the Direction-Of-Arrival (DOA) estimation errors in radar signal processing. This module generates denser radar points through different Probability Density Functions (PDFs) with the assistance of semantic information. Meanwhile, we introduce the Dual Sync Module (DSM), comprising spatial sync and modality sync, to enhance image features with radar positional information and facilitate the fusion of distinct characteristics in different modalities. Extensive experiments demonstrate the effectiveness of our approach, outperforming the state-of-the-art methods in the VoD and TJ4DRadSet datasets by $6.53\%$ and $2.03\%$ in RoI AP and BEV AP, respectively. The code is available at https://github.com/garfield-cpp/HGSFusion.
Abstract:We address the task of Vision-Language Navigation in Continuous Environments (VLN-CE) under the zero-shot setting. Zero-shot VLN-CE is particularly challenging due to the absence of expert demonstrations for training and minimal environment structural prior to guide navigation. To confront these challenges, we propose a Constraint-Aware Navigator (CA-Nav), which reframes zero-shot VLN-CE as a sequential, constraint-aware sub-instruction completion process. CA-Nav continuously translates sub-instructions into navigation plans using two core modules: the Constraint-Aware Sub-instruction Manager (CSM) and the Constraint-Aware Value Mapper (CVM). CSM defines the completion criteria for decomposed sub-instructions as constraints and tracks navigation progress by switching sub-instructions in a constraint-aware manner. CVM, guided by CSM's constraints, generates a value map on the fly and refines it using superpixel clustering to improve navigation stability. CA-Nav achieves the state-of-the-art performance on two VLN-CE benchmarks, surpassing the previous best method by 12 percent and 13 percent in Success Rate on the validation unseen splits of R2R-CE and RxR-CE, respectively. Moreover, CA-Nav demonstrates its effectiveness in real-world robot deployments across various indoor scenes and instructions.
Abstract:It is widely agreed that open-vocabulary-based approaches outperform classical closed-set training solutions for recognizing unseen objects in images for semantic segmentation. Existing open-vocabulary approaches leverage vision-language models, such as CLIP, to align visual features with rich semantic features acquired through pre-training on large-scale vision-language datasets. However, the text prompts employed in these methods are short phrases based on fixed templates, failing to capture comprehensive object attributes. Moreover, while the CLIP model excels at exploiting image-level features, it is less effective at pixel-level representation, which is crucial for semantic segmentation tasks. In this work, we propose to alleviate the above-mentioned issues by leveraging multiple large-scale models to enhance the alignment between fine-grained visual features and enriched linguistic features. Specifically, our method employs large language models (LLMs) to generate enriched language prompts with diverse visual attributes for each category, including color, shape/size, and texture/material. Additionally, for enhanced visual feature extraction, the SAM model is adopted as a supplement to the CLIP visual encoder through a proposed learnable weighted fusion strategy. Built upon these techniques, our method, termed LMSeg, achieves state-of-the-art performance across all major open-vocabulary segmentation benchmarks. The code will be made available soon.
Abstract:Open-vocabulary 3D scene understanding is indispensable for embodied agents. Recent works leverage pretrained vision-language models (VLMs) for object segmentation and project them to point clouds to build 3D maps. Despite progress, a point cloud is a set of unordered coordinates that requires substantial storage space and does not directly convey occupancy information or spatial relation, making existing methods inefficient for downstream tasks, e.g., path planning and complex text-based object retrieval. To address these issues, we propose Octree-Graph, a novel scene representation for open-vocabulary 3D scene understanding. Specifically, a Chronological Group-wise Segment Merging (CGSM) strategy and an Instance Feature Aggregation (IFA) algorithm are first designed to get 3D instances and corresponding semantic features. Subsequently, an adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape. Finally, the Octree-Graph is constructed where each adaptive-octree acts as a graph node, and edges describe the spatial relations among nodes. Extensive experiments on various tasks are conducted on several widely-used datasets, demonstrating the versatility and effectiveness of our method.
Abstract:Cohort discovery is a crucial step in clinical research on Electronic Health Record (EHR) data. Temporal queries, which are common in cohort discovery, can be time-consuming and prone to errors when processed on large EHR datasets. In this work, we introduce TELII, a temporal event level inverted indexing method designed for cohort discovery on large EHR datasets. TELII is engineered to pre-compute and store the relations along with the time difference between events, thereby providing fast and accurate temporal query capabilities. We implemented TELII for the OPTUM de-identified COVID-19 EHR dataset, which contains data from 8.87 million patients. We demonstrate four common temporal query tasks and their implementation using TELII with a MongoDB backend. Our results show that the temporal query speed for TELII is up to 2000 times faster than that of existing non-temporal inverted indexes. TELII achieves millisecond-level response times, enabling users to quickly explore event relations and find preliminary evidence for their research questions. Not only is TELII practical and straightforward to implement, but it also offers easy adaptability to other EHR datasets. These advantages underscore TELII's potential to serve as the query engine for EHR-based applications, ensuring fast, accurate, and user-friendly query responses.
Abstract:The expanding complexity and dimensionality in the search space can adversely affect inductive learning in fuzzy rule classifiers, thus impacting the scalability and accuracy of fuzzy systems. This research specifically addresses the challenge of diabetic classification by employing the Brain Storm Optimization (BSO) algorithm to propose a novel fuzzy system that redefines rule generation for this context. An exponential model is integrated into the standard BSO algorithm to enhance rule derivation, tailored specifically for diabetes-related data. The innovative fuzzy system is then applied to classification tasks involving diabetic datasets, demonstrating a substantial improvement in classification accuracy, as evidenced by our experiments.
Abstract:Obtaining word timestamp information from end-to-end (E2E) ASR models remains challenging due to the lack of explicit time alignment during training. This issue is further complicated in multilingual models. Existing methods, either rely on lexicons or introduce additional tokens, leading to scalability issues and increased computational costs. In this work, we propose a new approach to estimate word boundaries without relying on lexicons. Our method leverages word embeddings from sub-word token units and a pretrained ASR model, requiring only word alignment information during training. Our proposed method can scale-up to any number of languages without incurring any additional cost. We validate our approach using a multilingual ASR model trained on five languages and demonstrate its effectiveness against a strong baseline.
Abstract:Understanding and predicting Origin-Destination (OD) flows is crucial for urban planning and transportation management. Traditional OD prediction models, while effective within single cities, often face limitations when applied across different cities due to varied traffic conditions, urban layouts, and socio-economic factors. In this paper, by employing Large Language Models (LLMs), we introduce a new method for cross-city OD flow prediction. Our approach leverages the advanced semantic understanding and contextual learning capabilities of LLMs to bridge the gap between cities with different characteristics, providing a robust and adaptable solution for accurate OD flow prediction that can be transferred from one city to another. Our novel framework involves four major components: collecting OD training datasets from a source city, instruction-tuning the LLMs, predicting destination POIs in a target city, and identifying the locations that best match the predicted destination POIs. We introduce a new loss function that integrates POI semantics and trip distance during training. By extracting high-quality semantic features from human mobility and POI data, the model understands spatial and functional relationships within urban spaces and captures interactions between individuals and various POIs. Extensive experimental results demonstrate the superiority of our approach over the state-of-the-art learning-based methods in cross-city OD flow prediction.
Abstract:The robotics community has consistently aimed to achieve generalizable robot manipulation with flexible natural language instructions. One of the primary challenges is that obtaining robot data fully annotated with both actions and texts is time-consuming and labor-intensive. However, partially annotated data, such as human activity videos without action labels and robot play data without language labels, is much easier to collect. Can we leverage these data to enhance the generalization capability of robots? In this paper, we propose GR-MG, a novel method which supports conditioning on both a language instruction and a goal image. During training, GR-MG samples goal images from trajectories and conditions on both the text and the goal image or solely on the image when text is unavailable. During inference, where only the text is provided, GR-MG generates the goal image via a diffusion-based image-editing model and condition on both the text and the generated image. This approach enables GR-MG to leverage large amounts of partially annotated data while still using language to flexibly specify tasks. To generate accurate goal images, we propose a novel progress-guided goal image generation model which injects task progress information into the generation process, significantly improving the fidelity and the performance. In simulation experiments, GR-MG improves the average number of tasks completed in a row of 5 from 3.35 to 4.04. In real-robot experiments, GR-MG is able to perform 47 different tasks and improves the success rate from 62.5% to 75.0% and 42.4% to 57.6% in simple and generalization settings, respectively. Code and checkpoints will be available at the project page: https://gr-mg.github.io/.
Abstract:In recent years, with the rapid development of deep learning technology, large language models (LLMs) such as BERT and GPT have achieved breakthrough results in natural language processing tasks. Machine translation (MT), as one of the core tasks of natural language processing, has also benefited from the development of large language models and achieved a qualitative leap. Despite the significant progress in translation performance achieved by large language models, machine translation still faces many challenges. Therefore, in this paper, we construct the dataset Euas-20 to evaluate the performance of large language models on translation tasks, the translation ability on different languages, and the effect of pre-training data on the translation ability of LLMs for researchers and developers.