Abstract:Transparent objects are common in daily life, while their unique optical properties pose challenges for RGB-D cameras, which struggle to capture accurate depth information. For assistant robots, accurately perceiving transparent objects held by humans is essential for effective human-robot interaction. This paper presents a Hand-Aware Depth Restoration (HADR) method for hand-held transparent objects based on creating an implicit neural representation function from a single RGB-D image. The proposed method introduces the hand posture as an important guidance to leverage semantic and geometric information. To train and evaluate the proposed method, we create a high-fidelity synthetic dataset called TransHand-14K with a real-to-sim data generation scheme. Experiments show that our method has a better performance and generalization ability compared with existing methods. We further develop a real-world human-to-robot handover system based on the proposed depth restoration method, demonstrating its application value in human-robot interaction.
Abstract:Most vision-based tactile sensors use elastomer deformation to infer tactile information, which can not sense some modalities, like temperature. As an important part of human tactile perception, temperature sensing can help robots better interact with the environment. In this work, we propose a novel multimodal vision-based tactile sensor, SATac, which can simultaneously perceive information of temperature, pressure, and shear. SATac utilizes thermoluminescence of strontium aluminate (SA) to sense a wide range of temperatures with exceptional resolution. Additionally, the pressure and shear can also be perceived by analyzing Voronoi diagram. A series of experiments are conducted to verify the performance of our proposed sensor. We also discuss the possible application scenarios and demonstrate how SATac could benefit robot perception capabilities.