Abstract:Controlling hands in the high-dimensional action space has been a longstanding challenge, yet humans naturally perform dexterous tasks with ease. In this paper, we draw inspiration from the human embodied cognition and reconsider dexterous hands as learnable systems. Specifically, we introduce MoDex, a framework which employs a neural hand model to capture the dynamical characteristics of hand movements. Based on the model, a bidirectional planning method is developed, which demonstrates efficiency in both training and inference. The method is further integrated with a large language model to generate various gestures such as ``Scissorshand" and ``Rock\&Roll." Moreover, we show that decomposing the system dynamics into a pretrained hand model and an external model improves data efficiency, as supported by both theoretical analysis and empirical experiments. Additional visualization results are available at https://tongwu19.github.io/MoDex.
Abstract:Transparent objects are common in daily life, while their unique optical properties pose challenges for RGB-D cameras, which struggle to capture accurate depth information. For assistant robots, accurately perceiving transparent objects held by humans is essential for effective human-robot interaction. This paper presents a Hand-Aware Depth Restoration (HADR) method for hand-held transparent objects based on creating an implicit neural representation function from a single RGB-D image. The proposed method introduces the hand posture as an important guidance to leverage semantic and geometric information. To train and evaluate the proposed method, we create a high-fidelity synthetic dataset called TransHand-14K with a real-to-sim data generation scheme. Experiments show that our method has a better performance and generalization ability compared with existing methods. We further develop a real-world human-to-robot handover system based on the proposed depth restoration method, demonstrating its application value in human-robot interaction.
Abstract:Tactile sensors, which provide information about the physical properties of objects, are an essential component of robotic systems. The visuotactile sensing technology with the merits of high resolution and low cost has facilitated the development of robotics from environment exploration to dexterous operation. Over the years, several reviews on visuotactile sensors for robots have been presented, but few of them discussed the significance of signal processing methods to visuotactile sensors. Apart from ingenious hardware design, the full potential of the sensory system toward designated tasks can only be released with the appropriate signal processing methods. Therefore, this paper provides a comprehensive review of visuotactile sensors from the perspective of signal processing methods and outlooks possible future research directions for visuotactile sensors.
Abstract:The advent of simulation engines has revolutionized learning and operational efficiency for robots, offering cost-effective and swift pipelines. However, the lack of a universal simulation platform tailored for chemical scenarios impedes progress in robotic manipulation and visualization of reaction processes. Addressing this void, we present Chemistry3D, an innovative toolkit that integrates extensive chemical and robotic knowledge. Chemistry3D not only enables robots to perform chemical experiments but also provides real-time visualization of temperature, color, and pH changes during reactions. Built on the NVIDIA Omniverse platform, Chemistry3D offers interfaces for robot operation, visual inspection, and liquid flow control, facilitating the simulation of special objects such as liquids and transparent entities. Leveraging this toolkit, we have devised RL tasks, object detection, and robot operation scenarios. Additionally, to discern disparities between the rendering engine and the real world, we conducted transparent object detection experiments using Sim2Real, validating the toolkit's exceptional simulation performance. The source code is available at https://github.com/huangyan28/Chemistry3D, and a related tutorial can be found at https://www.omni-chemistry.com.
Abstract:To foster an immersive and natural human-robot interaction, the implementation of tactile perception and feedback becomes imperative, effectively bridging the conventional sensory gap. In this paper, we propose a dual-modal electronic skin (e-skin) that integrates magnetic tactile sensing and vibration feedback for enhanced human-robot interaction. The dual-modal tactile e-skin offers multi-functional tactile sensing and programmable haptic feedback, underpinned by a layered structure comprised of flexible magnetic films, soft silicone, a Hall sensor and actuator array, and a microcontroller unit. The e-skin captures the magnetic field changes caused by subtle deformations through Hall sensors, employing deep learning for accurate tactile perception. Simultaneously, the actuator array generates mechanical vibrations to facilitate haptic feedback, delivering diverse mechanical stimuli. Notably, the dual-modal e-skin is capable of transmitting tactile information bidirectionally, enabling object recognition and fine-weighing operations. This bidirectional tactile interaction framework will enhance the immersion and efficiency of interactions between humans and robots.
Abstract:Intelligent robot is the ultimate goal in the robotics field. Existing works leverage learning-based or optimization-based methods to accomplish human-defined tasks. However, the challenge of enabling robots to explore various environments autonomously remains unresolved. In this work, we propose a framework named GExp, which enables robots to explore and learn autonomously without human intervention. To achieve this goal, we devise modules including self-exploration, knowledge-base-building, and close-loop feedback based on foundation models. Inspired by the way that infants interact with the world, GExp encourages robots to understand and explore the environment with a series of self-generated tasks. During the process of exploration, the robot will acquire skills from beneficial experiences that are useful in the future. GExp provides robots with the ability to solve complex tasks through self-exploration. GExp work is independent of prior interactive knowledge and human intervention, allowing it to adapt directly to different scenarios, unlike previous studies that provided in-context examples as few-shot learning. In addition, we propose a workflow of deploying the real-world robot system with self-learned skills as an embodied assistant.
Abstract:Manual oropharyngeal (OP) swab sampling is an intensive and risky task. In this article, a novel OP swab sampling device of low cost and high compliance is designed by combining the visuo-tactile sensor and the pneumatic actuator-based gripper. Here, a concave visuo-tactile sensor called CoTac is first proposed to address the problems of high cost and poor reliability of traditional multi-axis force sensors. Besides, by imitating the doctor's fingers, a soft pneumatic actuator with a rigid skeleton structure is designed, which is demonstrated to be reliable and safe via finite element modeling and experiments. Furthermore, we propose a sampling method that adopts a compliant control algorithm based on the adaptive virtual force to enhance the safety and compliance of the swab sampling process. The effectiveness of the device has been verified through sampling experiments as well as in vivo tests, indicating great application potential. The cost of the device is around 30 US dollars and the total weight of the functional part is less than 0.1 kg, allowing the device to be rapidly deployed on various robotic arms. Videos, hardware, and source code are available at: https://sites.google.com/view/swab-sampling/.
Abstract:Learning a risk-aware policy is essential but rather challenging in unstructured robotic tasks. Safe reinforcement learning methods open up new possibilities to tackle this problem. However, the conservative policy updates make it intractable to achieve sufficient exploration and desirable performance in complex, sample-expensive environments. In this paper, we propose a dual-agent safe reinforcement learning strategy consisting of a baseline and a safe agent. Such a decoupled framework enables high flexibility, data efficiency and risk-awareness for RL-based control. Concretely, the baseline agent is responsible for maximizing rewards under standard RL settings. Thus, it is compatible with off-the-shelf training techniques of unconstrained optimization, exploration and exploitation. On the other hand, the safe agent mimics the baseline agent for policy improvement and learns to fulfill safety constraints via off-policy RL tuning. In contrast to training from scratch, safe policy correction requires significantly fewer interactions to obtain a near-optimal policy. The dual policies can be optimized synchronously via a shared replay buffer, or leveraging the pre-trained model or the non-learning-based controller as a fixed baseline agent. Experimental results show that our approach can learn feasible skills without prior knowledge as well as deriving risk-averse counterparts from pre-trained unsafe policies. The proposed method outperforms the state-of-the-art safe RL algorithms on difficult robot locomotion and manipulation tasks with respect to both safety constraint satisfaction and sample efficiency.
Abstract:The accurate detection and grasping of transparent objects are challenging but of significance to robots. Here, a visual-tactile fusion framework for transparent object grasping under complex backgrounds and variant light conditions is proposed, including the grasping position detection, tactile calibration, and visual-tactile fusion based classification. First, a multi-scene synthetic grasping dataset generation method with a Gaussian distribution based data annotation is proposed. Besides, a novel grasping network named TGCNN is proposed for grasping position detection, showing good results in both synthetic and real scenes. In tactile calibration, inspired by human grasping, a fully convolutional network based tactile feature extraction method and a central location based adaptive grasping strategy are designed, improving the success rate by 36.7% compared to direct grasping. Furthermore, a visual-tactile fusion method is proposed for transparent objects classification, which improves the classification accuracy by 34%. The proposed framework synergizes the advantages of vision and touch, and greatly improves the grasping efficiency of transparent objects.