Abstract:Text-conditioned image generation has gained significant attention in recent years and are processing increasingly longer and comprehensive text prompt. In everyday life, dense and intricate text appears in contexts like advertisements, infographics, and signage, where the integration of both text and visuals is essential for conveying complex information. However, despite these advances, the generation of images containing long-form text remains a persistent challenge, largely due to the limitations of existing datasets, which often focus on shorter and simpler text. To address this gap, we introduce TextAtlas5M, a novel dataset specifically designed to evaluate long-text rendering in text-conditioned image generation. Our dataset consists of 5 million long-text generated and collected images across diverse data types, enabling comprehensive evaluation of large-scale generative models on long-text image generation. We further curate 3000 human-improved test set TextAtlasEval across 3 data domains, establishing one of the most extensive benchmarks for text-conditioned generation. Evaluations suggest that the TextAtlasEval benchmarks present significant challenges even for the most advanced proprietary models (e.g. GPT4o with DallE-3), while their open-source counterparts show an even larger performance gap. These evidences position TextAtlas5M as a valuable dataset for training and evaluating future-generation text-conditioned image generation models.
Abstract:Diffusion models have achieved significant progress in image generation. The pre-trained Stable Diffusion (SD) models are helpful for image deblurring by providing clear image priors. However, directly using a blurry image or pre-deblurred one as a conditional control for SD will either hinder accurate structure extraction or make the results overly dependent on the deblurring network. In this work, we propose a Latent Kernel Prediction Network (LKPN) to achieve robust real-world image deblurring. Specifically, we co-train the LKPN in latent space with conditional diffusion. The LKPN learns a spatially variant kernel to guide the restoration of sharp images in the latent space. By applying element-wise adaptive convolution (EAC), the learned kernel is utilized to adaptively process the input feature, effectively preserving the structural information of the input. This process thereby more effectively guides the generative process of Stable Diffusion (SD), enhancing both the deblurring efficacy and the quality of detail reconstruction. Moreover, the results at each diffusion step are utilized to iteratively estimate the kernels in LKPN to better restore the sharp latent by EAC. This iterative refinement enhances the accuracy and robustness of the deblurring process. Extensive experimental results demonstrate that the proposed method outperforms state-of-the-art image deblurring methods on both benchmark and real-world images.
Abstract:Humans can perceive speakers' characteristics (e.g., identity, gender, personality and emotion) by their appearance, which are generally aligned to their voice style. Recently, vision-driven Text-to-speech (TTS) scholars grounded their investigations on real-person faces, thereby restricting effective speech synthesis from applying to vast potential usage scenarios with diverse characters and image styles. To solve this issue, we introduce a novel FaceSpeak approach. It extracts salient identity characteristics and emotional representations from a wide variety of image styles. Meanwhile, it mitigates the extraneous information (e.g., background, clothing, and hair color, etc.), resulting in synthesized speech closely aligned with a character's persona. Furthermore, to overcome the scarcity of multi-modal TTS data, we have devised an innovative dataset, namely Expressive Multi-Modal TTS, which is diligently curated and annotated to facilitate research in this domain. The experimental results demonstrate our proposed FaceSpeak can generate portrait-aligned voice with satisfactory naturalness and quality.
Abstract:Real-world image super-resolution (Real-ISR) has achieved a remarkable leap by leveraging large-scale text-to-image models, enabling realistic image restoration from given recognition textual prompts. However, these methods sometimes fail to recognize some salient objects, resulting in inaccurate semantic restoration in these regions. Additionally, the same region may have a strong response to more than one prompt and it will lead to semantic ambiguity for image super-resolution. To alleviate the above two issues, in this paper, we propose to consider semantic segmentation as an additional control condition into diffusion-based image super-resolution. Compared to textual prompt conditions, semantic segmentation enables a more comprehensive perception of salient objects within an image by assigning class labels to each pixel. It also mitigates the risks of semantic ambiguities by explicitly allocating objects to their respective spatial regions. In practice, inspired by the fact that image super-resolution and segmentation can benefit each other, we propose SegSR which introduces a dual-diffusion framework to facilitate interaction between the image super-resolution and segmentation diffusion models. Specifically, we develop a Dual-Modality Bridge module to enable updated information flow between these two diffusion models, achieving mutual benefit during the reverse diffusion process. Extensive experiments show that SegSR can generate realistic images while preserving semantic structures more effectively.
Abstract:Reconstructing high-fidelity, animatable 3D head avatars from effortlessly captured monocular videos is a pivotal yet formidable challenge. Although significant progress has been made in rendering performance and manipulation capabilities, notable challenges remain, including incomplete reconstruction and inefficient Gaussian representation. To address these challenges, we introduce FATE, a novel method for reconstructing an editable full-head avatar from a single monocular video. FATE integrates a sampling-based densification strategy to ensure optimal positional distribution of points, improving rendering efficiency. A neural baking technique is introduced to convert discrete Gaussian representations into continuous attribute maps, facilitating intuitive appearance editing. Furthermore, we propose a universal completion framework to recover non-frontal appearance, culminating in a 360$^\circ$-renderable 3D head avatar. FATE outperforms previous approaches in both qualitative and quantitative evaluations, achieving state-of-the-art performance. To the best of our knowledge, FATE is the first animatable and 360$^\circ$ full-head monocular reconstruction method for a 3D head avatar. The code will be publicly released upon publication.
Abstract:Controlling the style and characteristics of speech synthesis is crucial for adapting the output to specific contexts and user requirements. Previous Text-to-speech (TTS) works have focused primarily on the technical aspects of producing natural-sounding speech, such as intonation, rhythm, and clarity. However, they overlook the fact that there is a growing emphasis on spatial perception of synthesized speech, which may provide immersive experience in gaming and virtual reality. To solve this issue, in this paper, we present a novel multi-modal TTS approach, namely Image-indicated Immersive Text-to-speech Synthesis (I2TTS). Specifically, we introduce a scene prompt encoder that integrates visual scene prompts directly into the synthesis pipeline to control the speech generation process. Additionally, we propose a reverberation classification and refinement technique that adjusts the synthesized mel-spectrogram to enhance the immersive experience, ensuring that the involved reverberation condition matches the scene accurately. Experimental results demonstrate that our model achieves high-quality scene and spatial matching without compromising speech naturalness, marking a significant advancement in the field of context-aware speech synthesis. Project demo page: https://spatialTTS.github.io/ Index Terms-Speech synthesis, scene prompt, spatial perception
Abstract:This paper builds upon our previous work on the Reconciled Polynomial Network (RPN). The original RPN model was designed under the assumption of input data independence, presuming the independence among both individual instances within data batches and attributes in each data instance. However, this assumption often proves invalid for function learning tasks involving complex, interdependent data such as language, images, time series, and graphs. Ignoring such data interdependence may inevitably lead to significant performance degradation. To overcome these limitations, we introduce the new Reconciled Polynomial Network (version 2), namely RPN 2, in this paper. By incorporating data and structural interdependence functions, RPN 2 explicitly models data interdependence via new component functions in its architecture. This enhancement not only significantly improves RPN 2's learning performance but also substantially expands its unifying potential, enabling it to encompass a broader range of contemporary dominant backbone models within its canonical representation. These backbones include, but are not limited to, convolutional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and Transformers. Our analysis reveals that the fundamental distinctions among these backbone models primarily stem from their diverse approaches to defining the interdependence functions. Furthermore, this unified representation opens up new opportunities for designing innovative architectures with the potential to surpass the performance of these dominant backbones.
Abstract:White matter alterations are increasingly implicated in neurological diseases and their progression. International-scale studies use diffusion-weighted magnetic resonance imaging (DW-MRI) to qualitatively identify changes in white matter microstructure and connectivity. Yet, quantitative analysis of DW-MRI data is hindered by inconsistencies stemming from varying acquisition protocols. There is a pressing need to harmonize the preprocessing of DW-MRI datasets to ensure the derivation of robust quantitative diffusion metrics across acquisitions. In the MICCAI-CDMRI 2023 QuantConn challenge, participants were provided raw data from the same individuals collected on the same scanner but with two different acquisitions and tasked with preprocessing the DW-MRI to minimize acquisition differences while retaining biological variation. Submissions are evaluated on the reproducibility and comparability of cross-acquisition bundle-wise microstructure measures, bundle shape features, and connectomics. The key innovations of the QuantConn challenge are that (1) we assess bundles and tractography in the context of harmonization for the first time, (2) we assess connectomics in the context of harmonization for the first time, and (3) we have 10x additional subjects over prior harmonization challenge, MUSHAC and 100x over SuperMUDI. We find that bundle surface area, fractional anisotropy, connectome assortativity, betweenness centrality, edge count, modularity, nodal strength, and participation coefficient measures are most biased by acquisition and that machine learning voxel-wise correction, RISH mapping, and NeSH methods effectively reduce these biases. In addition, microstructure measures AD, MD, RD, bundle length, connectome density, efficiency, and path length are least biased by these acquisition differences.
Abstract:Time series anomaly detection (TSAD) is becoming increasingly vital due to the rapid growth of time series data across various sectors. Anomalies in web service data, for example, can signal critical incidents such as system failures or server malfunctions, necessitating timely detection and response. However, most existing TSAD methodologies rely heavily on manual feature engineering or require extensive labeled training data, while also offering limited interpretability. To address these challenges, we introduce a pioneering framework called the Time Series Anomaly Multimodal Analyzer (TAMA), which leverages the power of Large Multimodal Models (LMMs) to enhance both the detection and interpretation of anomalies in time series data. By converting time series into visual formats that LMMs can efficiently process, TAMA leverages few-shot in-context learning capabilities to reduce dependence on extensive labeled datasets. Our methodology is validated through rigorous experimentation on multiple real-world datasets, where TAMA consistently outperforms state-of-the-art methods in TSAD tasks. Additionally, TAMA provides rich, natural language-based semantic analysis, offering deeper insights into the nature of detected anomalies. Furthermore, we contribute one of the first open-source datasets that includes anomaly detection labels, anomaly type labels, and contextual description, facilitating broader exploration and advancement within this critical field. Ultimately, TAMA not only excels in anomaly detection but also provides a comprehensive approach for understanding the underlying causes of anomalies, pushing TSAD forward through innovative methodologies and insights.
Abstract:For structural health monitoring, continuous and automatic crack detection has been a challenging problem. This study is conducted to propose a framework of automatic crack segmentation from high-resolution images containing crack information about steel box girders of bridges. Considering the multi-scale feature of cracks, convolutional neural network architecture of Feature Pyramid Networks (FPN) for crack detection is proposed. As for input, 120 raw images are processed via two approaches (shrinking the size of images and splitting images into sub-images). Then, models with the proposed structure of FPN for crack detection are developed. The result shows all developed models can automatically detect the cracks at the raw images. By shrinking the images, the computation efficiency is improved without decreasing accuracy. Because of the separable characteristic of crack, models using the splitting method provide more accurate crack segmentations than models using the resizing method. Therefore, for high-resolution images, the FPN structure coupled with the splitting method is an promising solution for the crack segmentation and detection.