Abstract:Face anonymization aims to conceal the visual identity of a face to safeguard the individual's privacy. Traditional methods like blurring and pixelation can largely remove identifying features, but these techniques significantly degrade image quality and are vulnerable to deep reconstruction attacks. Generative models have emerged as a promising solution for anonymizing faces while preserving a natural appearance.However, many still face limitations in visual quality and often overlook the potential to recover the original face from the anonymized version, which can be valuable in specific contexts such as image forensics. This paper proposes a novel framework named iFADIT, an acronym for Invertible Face Anonymization via Disentangled Identity Transform.The framework features a disentanglement architecture coupled with a secure flow-based model: the former decouples identity information from non-identifying attributes, while the latter transforms the decoupled identity into an anonymized version in an invertible manner controlled by a secret key. The anonymized face can then be reconstructed based on a pre-trained StyleGAN that ensures high image quality and realistic facial details. Recovery of the original face (aka de-anonymization) is possible upon the availability of the matching secret, by inverting the anonymization process based on the same set of model parameters. Furthermore, a dedicated secret-key mechanism along with a dual-phase training strategy is devised to ensure the desired properties of face anonymization. Qualitative and quantitative experiments demonstrate the superiority of the proposed approach in anonymity, reversibility, security, diversity, and interpretability over competing methods.
Abstract:We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
Abstract:Large Language Models (LLMs) possess the remarkable capability to understand human instructions and generate high-quality text, enabling them to act as agents that simulate human behaviours. This capability allows LLMs to emulate human beings in a more advanced manner, beyond merely replicating simple human behaviours. However, there is a lack of exploring into leveraging LLMs to craft characters from several aspects. In this work, we introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters that can be freely customised according to different user preferences. The customisable framework is helpful for designing customisable characters and role-playing agents according to human's preferences. We first propose the SimsConv dataset, which comprises 68 different customised characters, 1,360 multi-turn role-playing dialogues, and encompasses 13,971 interaction dialogues in total. The characters are created from several real-world elements, such as career, aspiration, trait, and skill. Building on these foundations, we present SimsChat, a freely customisable role-playing agent. It incorporates different real-world scenes and topic-specific character interaction dialogues, simulating characters' life experiences in various scenarios and topic-specific interactions with specific emotions. Experimental results show that our proposed framework achieves desirable performance and provides helpful guideline for building better simulacra of human beings in the future. Our data and code are available at https://github.com/Bernard-Yang/SimsChat.
Abstract:Graph neural networks (GNNs) have achieved tremendous success, but recent studies have shown that GNNs are vulnerable to adversarial attacks, which significantly hinders their use in safety-critical scenarios. Therefore, the design of robust GNNs has attracted increasing attention. However, existing research has mainly been conducted via experimental trial and error, and thus far, there remains a lack of a comprehensive understanding of the vulnerability of GNNs. To address this limitation, we systematically investigate the adversarial robustness of GNNs by considering graph data patterns, model-specific factors, and the transferability of adversarial examples. Through extensive experiments, a set of principled guidelines is obtained for improving the adversarial robustness of GNNs, for example: (i) rather than highly regular graphs, the training graph data with diverse structural patterns is crucial for model robustness, which is consistent with the concept of adversarial training; (ii) the large model capacity of GNNs with sufficient training data has a positive effect on model robustness, and only a small percentage of neurons in GNNs are affected by adversarial attacks; (iii) adversarial transfer is not symmetric and the adversarial examples produced by the small-capacity model have stronger adversarial transferability. This work illuminates the vulnerabilities of GNNs and opens many promising avenues for designing robust GNNs.
Abstract:Graph Neural Networks (GNNs) have demonstrated significant application potential in various fields. However, GNNs are still vulnerable to adversarial attacks. Numerous adversarial defense methods on GNNs are proposed to address the problem of adversarial attacks. However, these methods can only serve as a defense before poisoning, but cannot repair poisoned GNN. Therefore, there is an urgent need for a method to repair poisoned GNN. In this paper, we address this gap by introducing the novel concept of model repair for GNNs. We propose a repair framework, Repairing Robustness of Graph Neural Networks via Machine Unlearning (GraphMU), which aims to fine-tune poisoned GNN to forget adversarial samples without the need for complete retraining. We also introduce a unlearning validation method to ensure that our approach effectively forget specified poisoned data. To evaluate the effectiveness of GraphMU, we explore three fine-tuned subgraph construction scenarios based on the available perturbation information: (i) Known Perturbation Ratios, (ii) Known Complete Knowledge of Perturbations, and (iii) Unknown any Knowledge of Perturbations. Our extensive experiments, conducted across four citation datasets and four adversarial attack scenarios, demonstrate that GraphMU can effectively restore the performance of poisoned GNN.
Abstract:Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community.
Abstract:Emotion recognition in conversation (ERC) has received increasing attention from researchers due to its wide range of applications.As conversation has a natural graph structure,numerous approaches used to model ERC based on graph convolutional networks (GCNs) have yielded significant results.However,the aggregation approach of traditional GCNs suffers from the node information redundancy problem,leading to node discriminant information loss.Additionally,single-layer GCNs lack the capacity to capture long-range contextual information from the graph. Furthermore,the majority of approaches are based on textual modality or stitching together different modalities, resulting in a weak ability to capture interactions between modalities. To address these problems, we present the relational bilevel aggregation graph convolutional network (RBA-GCN), which consists of three modules: the graph generation module (GGM), similarity-based cluster building module (SCBM) and bilevel aggregation module (BiAM). First, GGM constructs a novel graph to reduce the redundancy of target node information.Then,SCBM calculates the node similarity in the target node and its structural neighborhood, where noisy information with low similarity is filtered out to preserve the discriminant information of the node. Meanwhile, BiAM is a novel aggregation method that can preserve the information of nodes during the aggregation process. This module can construct the interaction between different modalities and capture long-range contextual information based on similarity clusters. On both the IEMOCAP and MELD datasets, the weighted average F1 score of RBA-GCN has a 2.17$\sim$5.21\% improvement over that of the most advanced method.Our code is available at https://github.com/luftmenscher/RBA-GCN and our article with the same name has been published in IEEE/ACM Transactions on Audio,Speech,and Language Processing,vol.31,2023
Abstract:This paper proposes a novel paradigm for facial privacy protection that unifies multiple characteristics including anonymity, diversity, reversibility and security within a single lightweight framework. We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model. In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one, thus ensuring privacy. The pre-obfuscation applied can be in diversified form with different strengths and styles specified by users. Along protection, a secret key is injected into the network such that the original image can only be recovered from the protection image via the same model given the correct key provided. Two modes of image recovery are devised to deal with malicious recovery attempts in different scenarios. Finally, extensive experiments conducted on three public image datasets demonstrate the superiority of the proposed framework over multiple state-of-the-art approaches.
Abstract:Advanced manipulation techniques have provided criminals with opportunities to make social panic or gain illicit profits through the generation of deceptive media, such as forged face images. In response, various deepfake detection methods have been proposed to assess image authenticity. Sequential deepfake detection, which is an extension of deepfake detection, aims to identify forged facial regions with the correct sequence for recovery. Nonetheless, due to the different combinations of spatial and sequential manipulations, forged face images exhibit substantial discrepancies that severely impact detection performance. Additionally, the recovery of forged images requires knowledge of the manipulation model to implement inverse transformations, which is difficult to ascertain as relevant techniques are often concealed by attackers. To address these issues, we propose Multi-Collaboration and Multi-Supervision Network (MMNet) that handles various spatial scales and sequential permutations in forged face images and achieve recovery without requiring knowledge of the corresponding manipulation method. Furthermore, existing evaluation metrics only consider detection accuracy at a single inferring step, without accounting for the matching degree with ground-truth under continuous multiple steps. To overcome this limitation, we propose a novel evaluation metric called Complete Sequence Matching (CSM), which considers the detection accuracy at multiple inferring steps, reflecting the ability to detect integrally forged sequences. Extensive experiments on several typical datasets demonstrate that MMNet achieves state-of-the-art detection performance and independent recovery performance.
Abstract:This paper illustrates the technologies of user next intent prediction with a concept knowledge graph. The system has been deployed on the Web at Alipay, serving more than 100 million daily active users. Specifically, we propose AlipayKG to explicitly characterize user intent, which is an offline concept knowledge graph in the Life-Service domain modeling the historical behaviors of users, the rich content interacted by users and the relations between them. We further introduce a Transformer-based model which integrates expert rules from the knowledge graph to infer the online user's next intent. Experimental results demonstrate that the proposed system can effectively enhance the performance of the downstream tasks while retaining explainability.