Abstract:Link prediction is a fundamental task in graph learning, inherently shaped by the topology of the graph. While traditional heuristics are grounded in graph topology, they encounter challenges in generalizing across diverse graphs. Recent research efforts have aimed to leverage the potential of heuristics, yet a unified formulation accommodating both local and global heuristics remains undiscovered. Drawing insights from the fact that both local and global heuristics can be represented by adjacency matrix multiplications, we propose a unified matrix formulation to accommodate and generalize various heuristics. We further propose the Heuristic Learning Graph Neural Network (HL-GNN) to efficiently implement the formulation. HL-GNN adopts intra-layer propagation and inter-layer connections, allowing it to reach a depth of around 20 layers with lower time complexity than GCN. HL-GNN is proven to be more expressive than heuristics and conventional GNNs, and it can adaptively trade-off between node features and topological information. Extensive experiments on the Planetoid, Amazon, and OGB datasets underscore the effectiveness and efficiency of HL-GNN. It outperforms existing methods by a large margin in prediction performance. Additionally, HL-GNN is several orders of magnitude faster than heuristic-inspired methods while requiring only a few trainable parameters. The case study further demonstrates that the generalized heuristics and learned weights are highly interpretable.
Abstract:Graph-structured data are the commonly used and have wide application scenarios in the real world. For these diverse applications, the vast variety of learning tasks, graph domains, and complex graph learning procedures present challenges for human experts when designing versatile graph learning approaches. Facing these challenges, large language models (LLMs) offer a potential solution due to the extensive knowledge and the human-like intelligence. This paper proposes a novel conceptual prototype for designing versatile graph learning methods with LLMs, with a particular focus on the "where" and "how" perspectives. From the "where" perspective, we summarize four key graph learning procedures, including task definition, graph data feature engineering, model selection and optimization, deployment and serving. We then explore the application scenarios of LLMs in these procedures across a wider spectrum. In the "how" perspective, we align the abilities of LLMs with the requirements of each procedure. Finally, we point out the promising directions that could better leverage the strength of LLMs towards versatile graph learning methods.
Abstract:Graph structured data are widely existed and applied in the real-world applications, while it is a challenge to handling these diverse data and learning tasks on graph in an efficient manner. When facing the complicated graph learning tasks, experts have designed diverse Graph Neural Networks (GNNs) in recent years. They have also implemented AutoML in Graph, also known as AutoGraph, to automatically generate data-specific solutions. Despite their success, they encounter limitations in (1) managing diverse learning tasks at various levels, (2) dealing with different procedures in graph learning beyond architecture design, and (3) the huge requirements on the prior knowledge when using AutoGraph. In this paper, we propose to use Large Language Models (LLMs) as autonomous agents to simplify the learning process on diverse real-world graphs. Specifically, in response to a user request which may contain varying data and learning targets at the node, edge, or graph levels, the complex graph learning task is decomposed into three components following the agent planning, namely, detecting the learning intent, configuring solutions based on AutoGraph, and generating a response. The AutoGraph agents manage crucial procedures in automated graph learning, including data-processing, AutoML configuration, searching architectures, and hyper-parameter fine-tuning. With these agents, those components are processed by decomposing and completing step by step, thereby generating a solution for the given data automatically, regardless of the learning task on node or graph. The proposed method is dubbed Auto$^2$Graph, and the comparable performance on different datasets and learning tasks. Its effectiveness is demonstrated by its comparable performance on different datasets and learning tasks, as well as the human-like decisions made by the agents.
Abstract:In recent years, Graph Neural Networks (GNNs) have been popular in the graph classification task. Currently, shallow GNNs are more common due to the well-known over-smoothing problem facing deeper GNNs. However, they are sub-optimal without utilizing the information from distant nodes, i.e., the long-range dependencies. The mainstream methods in the graph classification task can extract the long-range dependencies either by designing the pooling operations or incorporating the higher-order neighbors, while they have evident drawbacks by modifying the original graph structure, which may result in information loss in graph structure learning. In this paper, by justifying the smaller influence of the over-smoothing problem in the graph classification task, we evoke the importance of stacking-based GNNs and then employ them to capture the long-range dependencies without modifying the original graph structure. To achieve this, two design needs are given for stacking-based GNNs, i.e., sufficient model depth and adaptive skip-connection schemes. By transforming the two design needs into designing data-specific inter-layer connections, we propose a novel approach with the help of neural architecture search (NAS), which is dubbed LRGNN (Long-Range Graph Neural Networks). Extensive experiments on five datasets show that the proposed LRGNN can achieve the best performance, and obtained data-specific GNNs with different depth and skip-connection schemes, which can better capture the long-range dependencies.
Abstract:In recent years, Graph Neural Networks (GNNs) have been popular in graph representation learning which assumes the homophily property, i.e., the connected nodes have the same label or have similar features. However, they may fail to generalize into the heterophilous graphs which in the low/medium level of homophily. Existing methods tend to address this problem by enhancing the intra-class information extraction, i.e., either by designing better GNNs to improve the model effectiveness, or re-designing the graph structures to incorporate more potential intra-class nodes from distant hops. Despite the success, we observe two aspects that can be further improved: (a) enhancing the ego feature information extraction from node itself which is more reliable in extracting the intra-class information; (b) designing node-wise GNNs can better adapt to the nodes with different homophily ratios. In this paper, we propose a novel method IIE-GNN (Intra-class Information Enhanced Graph Neural Networks) to achieve two improvements. A unified framework is proposed based on the literature, in which the intra-class information from the node itself and neighbors can be extracted based on seven carefully designed blocks. With the help of neural architecture search (NAS), we propose a novel search space based on the framework, and then provide an architecture predictor to design GNNs for each node. We further conduct experiments to show that IIE-GNN can improve the model performance by designing node-wise GNNs to enhance intra-class information extraction.
Abstract:Aiming at two molecular graph datasets and one protein association subgraph dataset in OGB graph classification task, we design a graph neural network framework for graph classification task by introducing PAS(Pooling Architecture Search). At the same time, we improve it based on the GNN topology design method F2GNN to further design the feature selection and fusion strategies, so as to further improve the performance of the model in the graph property prediction task while overcoming the over smoothing problem of deep GNN training. Finally, a performance breakthrough is achieved on these three datasets, which is significantly better than other methods with fixed aggregate function. It is proved that the NAS method has high generalization ability for multiple tasks and the advantage of our method in processing graph property prediction tasks.
Abstract:Graph structured data is ubiquitous in daily life and scientific areas and has attracted increasing attention. Graph Neural Networks (GNNs) have been proved to be effective in modeling graph structured data and many variants of GNN architectures have been proposed. However, much human effort is often needed to tune the architecture depending on different datasets. Researchers naturally adopt Automated Machine Learning on Graph Learning, aiming to reduce the human effort and achieve generally top-performing GNNs, but their methods focus more on the architecture search. To understand GNN practitioners' automated solutions, we organized AutoGraph Challenge at KDD Cup 2020, emphasizing on automated graph neural networks for node classification. We received top solutions especially from industrial tech companies like Meituan, Alibaba and Twitter, which are already open sourced on Github. After detailed comparisons with solutions from academia, we quantify the gaps between academia and industry on modeling scope, effectiveness and efficiency, and show that (1) academia AutoML for Graph solutions focus on GNN architecture search while industrial solutions, especially the winning ones in the KDD Cup, tend to obtain an overall solution (2) by neural architecture search only, academia solutions achieve on average 97.3% accuracy of industrial solutions (3) academia solutions are cheap to obtain with several GPU hours while industrial solutions take a few months' labors. Academic solutions also contain much fewer parameters.
Abstract:In recent years, Graph Neural Networks (GNNs) have shown superior performance on diverse real-world applications. To improve the model capacity, besides designing aggregation operations, GNN topology design is also very important. In general, there are two mainstream GNN topology design manners. The first one is to stack aggregation operations to obtain the higher-level features but easily got performance drop as the network goes deeper. Secondly, the multiple aggregation operations are utilized in each layer which provides adequate and independent feature extraction stage on local neighbors while are costly to obtain the higher-level information. To enjoy the benefits while alleviating the corresponding deficiencies of these two manners, we learn to design the topology of GNNs in a novel feature fusion perspective which is dubbed F$^2$GNN. To be specific, we provide a feature fusion perspective in designing GNN topology and propose a novel framework to unify the existing topology designs with feature selection and fusion strategies. Then we develop a neural architecture search method on top of the unified framework which contains a set of selection and fusion operations in the search space and an improved differentiable search algorithm. The performance gains on eight real-world datasets demonstrate the effectiveness of F$^2$GNN. We further conduct experiments to show that F$^2$GNN can improve the model capacity while alleviating the deficiencies of existing GNN topology design manners, especially alleviating the over-smoothing problem, by utilizing different levels of features adaptively.
Abstract:In recent years, Graph Neural Networks (GNNs) have shown superior performance on diverse applications on real-world datasets. To improve the model capacity and alleviate the over-smoothing problem, several methods proposed to incorporate the intermediate layers by layer-wise connections. However, due to the highly diverse graph types, the performance of existing methods vary on diverse graphs, leading to a need for data-specific layer-wise connection methods. To address this problem, we propose a novel framework LLC (Learn Layer-wise Connections) based on neural architecture search (NAS) to learn adaptive connections among intermediate layers in GNNs. LLC contains one novel search space which consists of 3 types of blocks and learnable connections, and one differentiable search algorithm to enable the efficient search process. Extensive experiments on five real-world datasets are conducted, and the results show that the searched layer-wise connections can not only improve the performance but also alleviate the over-smoothing problem.
Abstract:Graph classification is an important problem with applications across many domains, like chemistry and bioinformatics, for which graph neural networks (GNNs) have been state-of-the-art (SOTA) methods. GNNs are designed to learn node-level representation based on neighborhood aggregation schemes, and to obtain graph-level representation, pooling methods are applied after the aggregation operation in existing GNN models to generate coarse-grained graphs. However,due to highly diverse applications of graph classification, and the performance of existing pooling methods vary on different graphs. In other words, it is a challenging problem to design a universal pooling architecture to perform well in most cases, leading to a demand for data-specific pooling methods in real-world applications. To address this problem, we propose to use neural architecture search (NAS) to search for adaptive pooling architectures for graph classification. Firstly we designed a unified framework consisting of four modules: Aggregation, Pooling, Readout, and Merge, which can cover existing human-designed pooling methods for graph classification. Based on this framework, a novel search space is designed by incorporating popular operations in human-designed architectures. Then to enable efficient search, a coarsening strategy is proposed to continuously relax the search space, thus a differentiable search method can be adopted. Extensive experiments on six real-world datasets from three domains are conducted, and the results demonstrate the effectiveness and efficiency of the proposed framework.