Abstract:Foundation models, such as Large language Models (LLMs), have attracted significant amount of interest due to their large number of applications. Existing works show that appropriate prompt design, such as Chain-of-Thoughts, can unlock LLM's powerful capacity in diverse areas. However, when handling tasks involving repetitive sub-tasks and/or deceptive contents, such as arithmetic calculation and article-level fake news detection, existing prompting strategies either suffers from insufficient expressive power or intermediate errors triggered by hallucination. To make LLM more discerning to such intermediate errors, we propose to guide LLM with a Divide-and-Conquer program that simultaneously ensures superior expressive power and disentangles task decomposition, sub-task resolution, and resolution assembly process. Theoretic analysis reveals that our strategy can guide LLM to extend the expressive power of fixed-depth Transformer. Experiments indicate that our proposed method can achieve better performance than typical prompting strategies in tasks bothered by intermediate errors and deceptive contents, such as large integer multiplication, hallucination detection and misinformation detection.
Abstract:Person-job fit is an essential part of online recruitment platforms in serving various downstream applications like Job Search and Candidate Recommendation. Recently, pretrained large language models have further enhanced the effectiveness by leveraging richer textual information in user profiles and job descriptions apart from user behavior features and job metadata. However, the general domain-oriented design struggles to capture the unique structural information within user profiles and job descriptions, leading to a loss of latent semantic correlations. We propose TAROT, a hierarchical multitask co-pretraining framework, to better utilize structural and semantic information for informative text embeddings. TAROT targets semi-structured text in profiles and jobs, and it is co-pretained with multi-grained pretraining tasks to constrain the acquired semantic information at each level. Experiments on a real-world LinkedIn dataset show significant performance improvements, proving its effectiveness in person-job fit tasks.
Abstract:Tabular data analysis is crucial in various fields, and large language models show promise in this area. However, current research mostly focuses on rudimentary tasks like Text2SQL and TableQA, neglecting advanced analysis like forecasting and chart generation. To address this gap, we developed the Text2Analysis benchmark, incorporating advanced analysis tasks that go beyond the SQL-compatible operations and require more in-depth analysis. We also develop five innovative and effective annotation methods, harnessing the capabilities of large language models to enhance data quality and quantity. Additionally, we include unclear queries that resemble real-world user questions to test how well models can understand and tackle such challenges. Finally, we collect 2249 query-result pairs with 347 tables. We evaluate five state-of-the-art models using three different metrics and the results show that our benchmark presents introduces considerable challenge in the field of tabular data analysis, paving the way for more advanced research opportunities.
Abstract:Online recruitment platforms typically employ Person-Job Fit models in the core service that automatically match suitable job seekers with appropriate job positions. While existing works leverage historical or contextual information, they often disregard a crucial aspect: job seekers' social relationships in professional networks. This paper emphasizes the importance of incorporating professional networks into the Person-Job Fit model. Our innovative approach consists of two stages: (1) defining a Workplace Heterogeneous Information Network (WHIN) to capture heterogeneous knowledge, including professional connections and pre-training representations of various entities using a heterogeneous graph neural network; (2) designing a Contextual Social Attention Graph Neural Network (CSAGNN) that supplements users' missing information with professional connections' contextual information. We introduce a job-specific attention mechanism in CSAGNN to handle noisy professional networks, leveraging pre-trained entity representations from WHIN. We demonstrate the effectiveness of our approach through experimental evaluations conducted across three real-world recruitment datasets from LinkedIn, showing superior performance compared to baseline models.
Abstract:Table reasoning has shown remarkable progress in a wide range of table-based tasks. These challenging tasks require reasoning over both free-form natural language (NL) questions and semi-structured tabular data. However, previous table reasoning solutions suffer from significant performance degradation on "huge" tables. In addition, most existing methods struggle to reason over complex questions since they lack essential information or they are scattered in different places. To alleviate these challenges, we exploit a table provider, namely TAP4LLM, on versatile sampling, augmentation, and packing methods to achieve effective semi-structured data reasoning using large language models (LLMs), which 1) decompose raw tables into sub-tables with specific rows or columns based on the rules or semantic similarity; 2) augment table information by extracting semantic and statistical metadata from raw tables while retrieving relevant knowledge from trustworthy knowledge sources (e.g., Wolfram Alpha, Wikipedia); 3) pack sampled tables with augmented knowledge into sequence prompts for LLMs reasoning while balancing the token allocation trade-off. We show that TAP4LLM allows for different components as plug-ins, enhancing LLMs' understanding of structured data in diverse tabular tasks.
Abstract:Recent years have witnessed the substantial progress of large-scale models across various domains, such as natural language processing and computer vision, facilitating the expression of concrete concepts. Unlike concrete concepts that are usually directly associated with physical objects, expressing abstract concepts through natural language requires considerable effort, which results from their intricate semantics and connotations. An alternative approach is to leverage images to convey rich visual information as a supplement. Nevertheless, existing Text-to-Image (T2I) models are primarily trained on concrete physical objects and tend to fail to visualize abstract concepts. Inspired by the three-layer artwork theory that identifies critical factors, intent, object and form during artistic creation, we propose a framework of Text-to-Image generation for Abstract Concepts (TIAC). The abstract concept is clarified into a clear intent with a detailed definition to avoid ambiguity. LLMs then transform it into semantic-related physical objects, and the concept-dependent form is retrieved from an LLM-extracted form pattern set. Information from these three aspects will be integrated to generate prompts for T2I models via LLM. Evaluation results from human assessments and our newly designed metric concept score demonstrate the effectiveness of our framework in creating images that can sufficiently express abstract concepts.
Abstract:Software development plays a crucial role in driving innovation and efficiency across modern societies. To meet the demands of this dynamic field, there is a growing need for an effective software development assistant. However, existing large language models represented by ChatGPT suffer from limited accessibility, including training data and model weights. Although other large open-source models like LLaMA have shown promise, they still struggle with understanding human intent. In this paper, we present SoTaNa, an open-source software development assistant. SoTaNa utilizes ChatGPT to generate high-quality instruction-based data for the domain of software engineering and employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA. We evaluate the effectiveness of \our{} in answering Stack Overflow questions and demonstrate its capabilities. Additionally, we discuss its capabilities in code summarization and generation, as well as the impact of varying the volume of generated data on model performance. Notably, SoTaNa can run on a single GPU, making it accessible to a broader range of researchers. Our code, model weights, and data are public at \url{https://github.com/DeepSoftwareAnalytics/SoTaNa}.
Abstract:Collaborative filtering (CF) is an important research direction in recommender systems that aims to make recommendations given the information on user-item interactions. Graph CF has attracted more and more attention in recent years due to its effectiveness in leveraging high-order information in the user-item bipartite graph for better recommendations. Specifically, recent studies show the success of graph neural networks (GNN) for CF is attributed to its low-pass filtering effects. However, current researches lack a study of how different signal components contributes to recommendations, and how to design strategies to properly use them well. To this end, from the view of spectral transformation, we analyze the important factors that a graph filter should consider to achieve better performance. Based on the discoveries, we design JGCF, an efficient and effective method for CF based on Jacobi polynomial bases and frequency decomposition strategies. Extensive experiments on four widely used public datasets show the effectiveness and efficiency of the proposed methods, which brings at most 27.06% performance gain on Alibaba-iFashion. Besides, the experimental results also show that JGCF is better at handling sparse datasets, which shows potential in making recommendations for cold-start users.
Abstract:Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains underexplored. In this research, we specialize in harnessing the potential of LLMs to comprehend critical information from financial reports, which are hybrid long-documents. We propose an Automated Financial Information Extraction (AFIE) framework that enhances LLMs' ability to comprehend and extract information from financial reports. To evaluate AFIE, we develop a Financial Reports Numerical Extraction (FINE) dataset and conduct an extensive experimental analysis. Our framework is effectively validated on GPT-3.5 and GPT-4, yielding average accuracy increases of 53.94% and 33.77%, respectively, compared to a naive method. These results suggest that the AFIE framework offers accuracy for automated numerical extraction from complex, hybrid documents.
Abstract:Large language models~(LLM) like ChatGPT have become indispensable to artificial general intelligence~(AGI), demonstrating excellent performance in various natural language processing tasks. In the real world, graph data is ubiquitous and an essential part of AGI and prevails in domains like social network analysis, bioinformatics and recommender systems. The training corpus of large language models often includes some algorithmic components, which allows them to achieve certain effects on some graph data-related problems. However, there is still little research on their performance on a broader range of graph-structured data. In this study, we conduct an extensive investigation to assess the proficiency of LLMs in comprehending graph data, employing a diverse range of structural and semantic-related tasks. Our analysis encompasses 10 distinct tasks that evaluate the LLMs' capabilities in graph understanding. Through our study, we not only uncover the current limitations of language models in comprehending graph structures and performing associated reasoning tasks but also emphasize the necessity for further advancements and novel approaches to enhance their graph processing capabilities. Our findings contribute valuable insights towards bridging the gap between language models and graph understanding, paving the way for more effective graph mining and knowledge extraction.