Abstract:Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains underexplored. In this research, we specialize in harnessing the potential of LLMs to comprehend critical information from financial reports, which are hybrid long-documents. We propose an Automated Financial Information Extraction (AFIE) framework that enhances LLMs' ability to comprehend and extract information from financial reports. To evaluate AFIE, we develop a Financial Reports Numerical Extraction (FINE) dataset and conduct an extensive experimental analysis. Our framework is effectively validated on GPT-3.5 and GPT-4, yielding average accuracy increases of 53.94% and 33.77%, respectively, compared to a naive method. These results suggest that the AFIE framework offers accuracy for automated numerical extraction from complex, hybrid documents.
Abstract:With the development of temporal networks such as E-commerce networks and social networks, the issue of temporal link prediction has attracted increasing attention in recent years. The Temporal Link Prediction task of WSDM Cup 2022 expects a single model that can work well on two kinds of temporal graphs simultaneously, which have quite different characteristics and data properties, to predict whether a link of a given type will occur between two given nodes within a given time span. Our team, named as nothing here, regards this task as a link prediction task in heterogeneous temporal networks and proposes a generic model, i.e., Heterogeneous Temporal Graph Network (HTGN), to solve such temporal link prediction task with the unfixed time intervals and the diverse link types. That is, HTGN can adapt to the heterogeneity of links and the prediction with unfixed time intervals within an arbitrary given time period. To train the model, we design a Bi-Time-Window training strategy (BTW) which has two kinds of mini-batches from two kinds of time windows. As a result, for the final test, we achieved an AUC of 0.662482 on dataset A, an AUC of 0.906923 on dataset B, and won 2nd place with an Average T-scores of 0.628942.