Abstract:Recent advances indicate that diffusion models hold great promise in image super-resolution. While the latest methods are primarily based on latent diffusion models with convolutional neural networks, there are few attempts to explore transformers, which have demonstrated remarkable performance in image generation. In this work, we design an effective diffusion transformer for image super-resolution (DiT-SR) that achieves the visual quality of prior-based methods, but through a training-from-scratch manner. In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks across different stages. The former facilitates multi-scale hierarchical feature extraction, while the latter reallocates the computational resources to critical layers to further enhance performance. Moreover, we thoroughly analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module, enhancing the model's capacity to process distinct frequency information at different time steps. Extensive experiments demonstrate that DiT-SR outperforms the existing training-from-scratch diffusion-based SR methods significantly, and even beats some of the prior-based methods on pretrained Stable Diffusion, proving the superiority of diffusion transformer in image super-resolution.
Abstract:Existing facial expression recognition (FER) methods typically fine-tune a pre-trained visual encoder using discrete labels. However, this form of supervision limits to specify the emotional concept of different facial expressions. In this paper, we observe that the rich knowledge in text embeddings, generated by vision-language models, is a promising alternative for learning discriminative facial expression representations. Inspired by this, we propose a novel knowledge-enhanced FER method with an emotional-to-neutral transformation. Specifically, we formulate the FER problem as a process to match the similarity between a facial expression representation and text embeddings. Then, we transform the facial expression representation to a neutral representation by simulating the difference in text embeddings from textual facial expression to textual neutral. Finally, a self-contrast objective is introduced to pull the facial expression representation closer to the textual facial expression, while pushing it farther from the neutral representation. We conduct evaluation with diverse pre-trained visual encoders including ResNet-18 and Swin-T on four challenging facial expression datasets. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art FER methods. The code will be publicly available.
Abstract:Food image composition requires the use of existing dish images and background images to synthesize a natural new image, while diffusion models have made significant advancements in image generation, enabling the construction of end-to-end architectures that yield promising results. However, existing diffusion models face challenges in processing and fusing information from multiple images and lack access to high-quality publicly available datasets, which prevents the application of diffusion models in food image composition. In this paper, we introduce a large-scale, high-quality food image composite dataset, FC22k, which comprises 22,000 foreground, background, and ground truth ternary image pairs. Additionally, we propose a novel food image composition method, Foodfusion, which leverages the capabilities of the pre-trained diffusion models and incorporates a Fusion Module for processing and integrating foreground and background information. This fused information aligns the foreground features with the background structure by merging the global structural information at the cross-attention layer of the denoising UNet. To further enhance the content and structure of the background, we also integrate a Content-Structure Control Module. Extensive experiments demonstrate the effectiveness and scalability of our proposed method.
Abstract:Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts. However, these approaches typically require tens or even hundreds of iterative samplings, resulting in significant latency. Recently, techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation. Nonetheless, when aligning the knowledge of student and teacher models, these solutions either solely rely on pixel-level loss constraints or neglect the fact that diffusion models prioritize varying levels of information at different time steps. To accomplish effective and efficient image super-resolution, we propose a time-aware diffusion distillation method, named TAD-SR. Specifically, we introduce a novel score distillation strategy to align the data distribution between the outputs of the student and teacher models after minor noise perturbation. This distillation strategy enables the student network to concentrate more on the high-frequency details. Furthermore, to mitigate performance limitations stemming from distillation, we integrate a latent adversarial loss and devise a time-aware discriminator that leverages diffusion priors to effectively distinguish between real images and generated images. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method achieves comparable or even superior performance compared to both previous state-of-the-art (SOTA) methods and the teacher model in just one sampling step. Codes are available at https://github.com/LearningHx/TAD-SR.
Abstract:Due to the successful development of deep image generation technology, forgery detection plays a more important role in social and economic security. Racial bias has not been explored thoroughly in the deep forgery detection field. In the paper, we first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods. Different from existing forgery detection datasets, the self-construct FairFD dataset contains a balanced racial ratio and diverse forgery generation images with the largest-scale subjects. Additionally, we identify the problems with naive fairness metrics when benchmarking forgery detection models. To comprehensively evaluate fairness, we design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results. Extensive experiments conducted with nine representative forgery detection models demonstrate the value of the proposed dataset and the reasonability of the designed fairness metrics. We also conduct more in-depth analyses to offer more insights to inspire researchers in the community.
Abstract:Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat. Traditional forgery detection methods directly centralized training on data and lacked consideration of information sharing in non-public video data scenarios and data privacy. Naturally, the federated learning strategy can be applied for privacy protection, which aggregates model parameters of clients but not original data. However, simple federated learning can't achieve satisfactory performance because of poor generalization capabilities for the real hybrid-domain forgery dataset. To solve the problem, the paper proposes a novel federated face forgery detection learning with personalized representation. The designed Personalized Forgery Representation Learning aims to learn the personalized representation of each client to improve the detection performance of individual client models. In addition, a personalized federated learning training strategy is utilized to update the parameters of the distributed detection model. Here collaborative training is conducted on multiple distributed client devices, and shared representations of these client models are uploaded to the server side for aggregation. Experiments on several public face forgery detection datasets demonstrate the superior performance of the proposed algorithm compared with state-of-the-art methods. The code is available at \emph{https://github.com/GANG370/PFR-Forgery.}
Abstract:With the great development of generative model techniques, face forgery detection draws more and more attention in the related field. Researchers find that existing face forgery models are still vulnerable to adversarial examples with generated pixel perturbations in the global image. These generated adversarial samples still can't achieve satisfactory performance because of the high detectability. To address these problems, we propose an Adversarial Semantic Mask Attack framework (ASMA) which can generate adversarial examples with good transferability and invisibility. Specifically, we propose a novel adversarial semantic mask generative model, which can constrain generated perturbations in local semantic regions for good stealthiness. The designed adaptive semantic mask selection strategy can effectively leverage the class activation values of different semantic regions, and further ensure better attack transferability and stealthiness. Extensive experiments on the public face forgery dataset prove the proposed method achieves superior performance compared with several representative adversarial attack methods. The code is publicly available at https://github.com/clawerO-O/ASMA.
Abstract:To facilitate the evolution of edge intelligence in ever-changing environments, we study on-device incremental learning constrained in limited computation resource in this paper. Current on-device training methods just focus on efficient training without considering the catastrophic forgetting, preventing the model getting stronger when continually exploring the world. To solve this problem, a direct solution is to involve the existing incremental learning mechanisms into the on-device training framework. Unfortunately, such a manner cannot work well as those mechanisms usually introduce large additional computational cost to the network optimization process, which would inevitably exceed the memory capacity of the edge devices. To address this issue, this paper makes an early effort to propose a simple but effective edge-friendly incremental learning framework. Based on an empirical study on the knowledge intensity of the kernel elements of the neural network, we find that the center kernel is the key for maximizing the knowledge intensity for learning new data, while freezing the other kernel elements would get a good balance on the model's capacity for overcoming catastrophic forgetting. Upon this finding, we further design a center-sensitive kernel optimization framework to largely alleviate the cost of the gradient computation and back-propagation. Besides, a dynamic channel element selection strategy is also proposed to facilitate a sparse orthogonal gradient projection for further reducing the optimization complexity, upon the knowledge explored from the new task data. Extensive experiments validate our method is efficient and effective, e.g., our method achieves average accuracy boost of 38.08% with even less memory and approximate computation compared to existing on-device training methods, indicating its significant potential for on-device incremental learning.
Abstract:Existing prompt-tuning methods have demonstrated impressive performances in continual learning (CL), by selecting and updating relevant prompts in the vision-transformer models. On the contrary, this paper aims to learn each task by tuning the prompts in the direction orthogonal to the subspace spanned by previous tasks' features, so as to ensure no interference on tasks that have been learned to overcome catastrophic forgetting in CL. However, different from the orthogonal projection in the traditional CNN architecture, the prompt gradient orthogonal projection in the ViT architecture shows completely different and greater challenges, i.e., 1) the high-order and non-linear self-attention operation; 2) the drift of prompt distribution brought by the LayerNorm in the transformer block. Theoretically, we have finally deduced two consistency conditions to achieve the prompt gradient orthogonal projection, which provide a theoretical guarantee of eliminating interference on previously learned knowledge via the self-attention mechanism in visual prompt tuning. In practice, an effective null-space-based approximation solution has been proposed to implement the prompt gradient orthogonal projection. Extensive experimental results demonstrate the effectiveness of anti-forgetting on four class-incremental benchmarks with diverse pre-trained baseline models, and our approach achieves superior performances to state-of-the-art methods. Our code is available at https://github.com/zugexiaodui/VPTinNSforCL.
Abstract:In recent years, instruction-based image editing methods have garnered significant attention in image editing. However, despite encompassing a wide range of editing priors, these methods are helpless when handling editing tasks that are challenging to accurately describe through language. We propose InstructBrush, an inversion method for instruction-based image editing methods to bridge this gap. It extracts editing effects from exemplar image pairs as editing instructions, which are further applied for image editing. Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization. To explore the ability of instruction inversion methods to guide image editing in open scenarios, we establish a TransformationOriented Paired Benchmark (TOP-Bench), which contains a rich set of scenes and editing types. The creation of this benchmark paves the way for further exploration of instruction inversion. Quantitatively and qualitatively, our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.