Abstract:Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis. Removing motion artifacts is a straightforward solution and has been extensively studied. However, paired data are still heavily relied on in recent works and the perturbations in \textit{k}-space (frequency domain) are not well considered, which limits their applications in the clinical field. To address these issues, we propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images. Specifically, considering that motion artifacts are mainly concentrated in high-frequency components in \textit{k}-space, we utilize the low-frequency components as the guide to ensure correct tissue textures. Additionally, given that high-frequency and pixel information are helpful for recovering shape and detail textures, we design alternate complementary masks to simultaneously destroy the artifact structure and exploit useful information. Quantitative experiments are performed on datasets from different tissues and show that our method achieves superior performance on several metrics. Qualitative evaluations with radiologists also show that our method provides better clinical feedback. Our code is available at https://github.com/medcx/PFAD.
Abstract:Retrieval and recommendation are two essential tasks in modern search tools. This paper introduces a novel retrieval-reranking framework leveraging Large Language Models (LLMs) to enhance the spatiotemporal and semantic associated mining and recommendation of relevant unusual climate and environmental events described in news articles and web posts. This framework uses advanced natural language processing techniques to address the limitations of traditional manual curation methods in terms of high labor cost and lack of scalability. Specifically, we explore an optimized solution to employ cutting-edge embedding models for semantically analyzing spatiotemporal events (news) and propose a Geo-Time Re-ranking (GT-R) strategy that integrates multi-faceted criteria including spatial proximity, temporal association, semantic similarity, and category-instructed similarity to rank and identify similar spatiotemporal events. We apply the proposed framework to a dataset of four thousand Local Environmental Observer (LEO) Network events, achieving top performance in recommending similar events among multiple cutting-edge dense retrieval models. The search and recommendation pipeline can be applied to a wide range of similar data search tasks dealing with geospatial and temporal data. We hope that by linking relevant events, we can better aid the general public to gain an enhanced understanding of climate change and its impact on different communities.
Abstract:Geospatial Knowledge Graphs (GeoKGs) model geoentities (e.g., places and natural features) and spatial relationships in an interconnected manner, providing strong knowledge support for geographic applications, including data retrieval, question-answering, and spatial reasoning. However, existing methods for mining and reasoning from GeoKGs, such as popular knowledge graph embedding (KGE) techniques, lack geographic awareness. This study aims to enhance general-purpose KGE by developing new strategies and integrating geometric features of spatial relations, including topology, direction, and distance, to infuse the embedding process with geographic intuition. The new model is tested on downstream link prediction tasks, and the results show that the inclusion of geometric features, particularly topology and direction, improves prediction accuracy for both geoentities and spatial relations. Our research offers new perspectives for integrating spatial concepts and principles into the GeoKG mining process, providing customized GeoAI solutions for geospatial challenges.
Abstract:Land-cover mapping is one of the vital applications in Earth observation, aiming at classifying each pixel's land-cover type of remote-sensing images. As natural and human activities change the landscape, the land-cover map needs to be rapidly updated. However, discovering newly appeared land-cover types in existing classification systems is still a non-trivial task hindered by various scales of complex land objects and insufficient labeled data over a wide-span geographic area. In this paper, we propose a generalized few-shot segmentation-based framework, named SegLand, to update novel classes in high-resolution land-cover mapping. Specifically, the proposed framework is designed in three parts: (a) Data pre-processing: the base training set and the few-shot support sets of novel classes are analyzed and augmented; (b) Hybrid segmentation structure; Multiple base learners and a modified Projection onto Orthogonal Prototypes (POP) network are combined to enhance the base-class recognition and to dig novel classes from insufficient labels data; (c) Ultimate fusion: the semantic segmentation results of the base learners and POP network are reasonably fused. The proposed framework has won first place in the leaderboard of the OpenEarthMap Land Cover Mapping Few-Shot Challenge. Experiments demonstrate the superiority of the framework for automatically updating novel land-cover classes with limited labeled data.
Abstract:Objective: This study aims to use artificial intelligence to realize the automatic planning of laminectomy, and verify the method. Methods: We propose a two-stage approach for automatic laminectomy cutting plane planning. The first stage was the identification of key points. 7 key points were manually marked on each CT image. The Spatial Pyramid Upsampling Network (SPU-Net) algorithm developed by us was used to accurately locate the 7 key points. In the second stage, based on the identification of key points, a personalized coordinate system was generated for each vertebra. Finally, the transverse and longitudinal cutting planes of laminectomy were generated under the coordinate system. The overall effect of planning was evaluated. Results: In the first stage, the average localization error of the SPU-Net algorithm for the seven key points was 0.65mm. In the second stage, a total of 320 transverse cutting planes and 640 longitudinal cutting planes were planned by the algorithm. Among them, the number of horizontal plane planning effects of grade A, B, and C were 318(99.38%), 1(0.31%), and 1(0.31%), respectively. The longitudinal planning effects of grade A, B, and C were 622(97.18%), 1(0.16%), and 17(2.66%), respectively. Conclusions: In this study, we propose a method for automatic surgical path planning of laminectomy based on the localization of key points in CT images. The results showed that the method achieved satisfactory results. More studies are needed to confirm the reliability of this approach in the future.
Abstract:3D human pose estimation has been a long-standing challenge in computer vision and graphics, where multi-view methods have significantly progressed but are limited by the tedious calibration processes. Existing multi-view methods are restricted to fixed camera pose and therefore lack generalization ability. This paper presents a novel Probabilistic Triangulation module that can be embedded in a calibrated 3D human pose estimation method, generalizing it to uncalibration scenes. The key idea is to use a probability distribution to model the camera pose and iteratively update the distribution from 2D features instead of using camera pose. Specifically, We maintain a camera pose distribution and then iteratively update this distribution by computing the posterior probability of the camera pose through Monte Carlo sampling. This way, the gradients can be directly back-propagated from the 3D pose estimation to the 2D heatmap, enabling end-to-end training. Extensive experiments on Human3.6M and CMU Panoptic demonstrate that our method outperforms other uncalibration methods and achieves comparable results with state-of-the-art calibration methods. Thus, our method achieves a trade-off between estimation accuracy and generalizability. Our code is in https://github.com/bymaths/probabilistic_triangulation
Abstract:Generating 3D human motion based on textual descriptions has been a research focus in recent years. It requires the generated motion to be diverse, natural, and conform to the textual description. Due to the complex spatio-temporal nature of human motion and the difficulty in learning the cross-modal relationship between text and motion, text-driven motion generation is still a challenging problem. To address these issues, we propose \textbf{AttT2M}, a two-stage method with multi-perspective attention mechanism: \textbf{body-part attention} and \textbf{global-local motion-text attention}. The former focuses on the motion embedding perspective, which means introducing a body-part spatio-temporal encoder into VQ-VAE to learn a more expressive discrete latent space. The latter is from the cross-modal perspective, which is used to learn the sentence-level and word-level motion-text cross-modal relationship. The text-driven motion is finally generated with a generative transformer. Extensive experiments conducted on HumanML3D and KIT-ML demonstrate that our method outperforms the current state-of-the-art works in terms of qualitative and quantitative evaluation, and achieve fine-grained synthesis and action2motion. Our code is in https://github.com/ZcyMonkey/AttT2M
Abstract:Motion retargeting is a fundamental problem in computer graphics and computer vision. Existing approaches usually have many strict requirements, such as the source-target skeletons needing to have the same number of joints or share the same topology. To tackle this problem, we note that skeletons with different structure may have some common body parts despite the differences in joint numbers. Following this observation, we propose a novel, flexible motion retargeting framework. The key idea of our method is to regard the body part as the basic retargeting unit rather than directly retargeting the whole body motion. To enhance the spatial modeling capability of the motion encoder, we introduce a pose-aware attention network (PAN) in the motion encoding phase. The PAN is pose-aware since it can dynamically predict the joint weights within each body part based on the input pose, and then construct a shared latent space for each body part by feature pooling. Extensive experiments show that our approach can generate better motion retargeting results both qualitatively and quantitatively than state-of-the-art methods. Moreover, we also show that our framework can generate reasonable results even for a more challenging retargeting scenario, like retargeting between bipedal and quadrupedal skeletons because of the body part retargeting strategy and PAN. Our code is publicly available.
Abstract:Table recognition (TR) is one of the research hotspots in pattern recognition, which aims to extract information from tables in an image. Common table recognition tasks include table detection (TD), table structure recognition (TSR) and table content recognition (TCR). TD is to locate tables in the image, TCR recognizes text content, and TSR recognizes spatial ogical structure. Currently, the end-to-end TR in real scenarios, accomplishing the three sub-tasks simultaneously, is yet an unexplored research area. One major factor that inhibits researchers is the lack of a benchmark dataset. To this end, we propose a new large-scale dataset named Table Recognition Set (TabRecSet) with diverse table forms sourcing from multiple scenarios in the wild, providing complete annotation dedicated to end-to-end TR research. It is the largest and first bi-lingual dataset for end-to-end TR, with 38.1K tables in which 20.4K are in English\, and 17.7K are in Chinese. The samples have diverse forms, such as the border-complete and -incomplete table, regular and irregular table (rotated, distorted, etc.). The scenarios are multiple in the wild, varying from scanned to camera-taken images, documents to Excel tables, educational test papers to financial invoices. The annotations are complete, consisting of the table body spatial annotation, cell spatial logical annotation and text content for TD, TSR and TCR, respectively. The spatial annotation utilizes the polygon instead of the bounding box or quadrilateral adopted by most datasets. The polygon spatial annotation is more suitable for irregular tables that are common in wild scenarios. Additionally, we propose a visualized and interactive annotation tool named TableMe to improve the efficiency and quality of table annotation.
Abstract:Predicting future motion based on historical motion sequence is a fundamental problem in computer vision, and it has wide applications in autonomous driving and robotics. Some recent works have shown that Graph Convolutional Networks(GCN) are instrumental in modeling the relationship between different joints. However, considering the variants and diverse action types in human motion data, the cross-dependency of the spatial-temporal relationships will be difficult to depict due to the decoupled modeling strategy, which may also exacerbate the problem of insufficient generalization. Therefore, we propose the Spatial-Temporal Gating-Adjacency GCN(GAGCN) to learn the complex spatial-temporal dependencies over diverse action types. Specifically, we adopt gating networks to enhance the generalization of GCN via the trainable adaptive adjacency matrix obtained by blending the candidate spatial-temporal adjacency matrices. Moreover, GAGCN addresses the cross-dependency of space and time by balancing the weights of spatial-temporal modeling and fusing the decoupled spatial-temporal features. Extensive experiments on Human 3.6M, AMASS, and 3DPW demonstrate that GAGCN achieves state-of-the-art performance in both short-term and long-term predictions. Our code will be released in the future.