Abstract:We consider the quantum \emph{symmetric} private information retrieval (QSPIR) problem in a system with $N$ databases and $K$ messages, with $U$ unresponsive servers, $T$-colluding servers, and $X$-security parameter, under several fundamental threat models. In the first model, there are $\mathcal{E}_1$ eavesdropped links in the uplink direction (the direction from the user to the $N$ servers), $\mathcal{E}_2$ eavesdropped links in the downlink direction (the direction from the servers to the user), where $|\mathcal{E}_1|, |\mathcal{E}_2| \leq E$; we coin this eavesdropper setting as \emph{dynamic} eavesdroppers. We show that super-dense coding gain can be achieved for some regimes. In the second model, we consider the case with Byzantine servers, i.e., servers that can coordinate to devise a plan to harm the privacy and security of the system together with static eavesdroppers, by listening to the same links in both uplink and downlink directions. It is important to note the considerable difference between the two threat models, since the eavesdroppers can take huge advantage of the presence of the Byzantine servers. Unlike the previous works in SPIR with Byzantine servers, that assume that the Byzantine servers can send only random symbols independent of the stored messages, we follow the definition of Byzantine servers in \cite{byzantine_tpir}, where the Byzantine servers can send symbols that can be functions of the storage, queries, as well as the random symbols in a way that can produce worse harm to the system. In the third and the most novel threat model, we consider the presence of Byzantine servers and dynamic eavesdroppers together. We show that having dynamic eavesdroppers along with Byzantine servers in the same system model creates more threats to the system than having static eavesdroppers with Byzantine servers.
Abstract:Transformers, known for their attention mechanisms, have proven highly effective in focusing on critical elements within complex data. This feature can effectively be used to address the time-varying channels in wireless communication systems. In this work, we introduce a channel-aware adaptive framework for semantic communication, where different regions of the image are encoded and compressed based on their semantic content. By employing vision transformers, we interpret the attention mask as a measure of the semantic contents of the patches and dynamically categorize the patches to be compressed at various rates as a function of the instantaneous channel bandwidth. Our method enhances communication efficiency by adapting the encoding resolution to the content's relevance, ensuring that even in highly constrained environments, critical information is preserved. We evaluate the proposed adaptive transmission framework using the TinyImageNet dataset, measuring both reconstruction quality and accuracy. The results demonstrate that our approach maintains high semantic fidelity while optimizing bandwidth, providing an effective solution for transmitting multi-resolution data in limited bandwidth conditions.
Abstract:In this paper, we address task-oriented (or goal-oriented) communications where an encoder at the transmitter learns compressed latent representations of data, which are then transmitted over a wireless channel. At the receiver, a decoder performs a machine learning task, specifically for classifying the received signals. The deep neural networks corresponding to the encoder-decoder pair are jointly trained, taking both channel and data characteristics into account. Our objective is to achieve high accuracy in completing the underlying task while minimizing the number of channel uses determined by the encoder's output size. To this end, we propose a multi-round, multi-task learning (MRMTL) approach for the dynamic update of channel uses in multi-round transmissions. The transmitter incrementally sends an increasing number of encoded samples over the channel based on the feedback from the receiver, and the receiver utilizes the signals from a previous round to enhance the task performance, rather than only considering the latest transmission. This approach employs multi-task learning to jointly optimize accuracy across varying number of channel uses, treating each configuration as a distinct task. By evaluating the confidence of the receiver in task decisions, MRMTL decides on whether to allocate additional channel uses in multiple rounds. We characterize both the accuracy and the delay (total number of channel uses) of MRMTL, demonstrating that it achieves the accuracy close to that of conventional methods requiring large numbers of channel uses, but with reduced delay by incorporating signals from a prior round. We consider the CIFAR-10 dataset, convolutional neural network architectures, and AWGN and Rayleigh channel models for performance evaluation. We show that MRMTL significantly improves the efficiency of task-oriented communications, balancing accuracy and latency effectively.
Abstract:In a classification task, counterfactual explanations provide the minimum change needed for an input to be classified into a favorable class. We consider the problem of privately retrieving the exact closest counterfactual from a database of accepted samples while enforcing that certain features of the input sample cannot be changed, i.e., they are \emph{immutable}. An applicant (user) whose feature vector is rejected by a machine learning model wants to retrieve the sample closest to them in the database without altering a private subset of their features, which constitutes the immutable set. While doing this, the user should keep their feature vector, immutable set and the resulting counterfactual index information-theoretically private from the institution. We refer to this as immutable private counterfactual retrieval (I-PCR) problem which generalizes PCR to a more practical setting. In this paper, we propose two I-PCR schemes by leveraging techniques from private information retrieval (PIR) and characterize their communication costs. Further, we quantify the information that the user learns about the database and compare it for the proposed schemes.
Abstract:Age of incorrect information (AoII) is a recently proposed freshness and mismatch metric that penalizes an incorrect estimation along with its duration. Therefore, keeping track of AoII requires the knowledge of both the source and estimation processes. In this paper, we consider a time-slotted pull-based remote estimation system under a sampling rate constraint where the information source is a general discrete-time Markov chain (DTMC) process. Moreover, packet transmission times from the source to the monitor are non-zero which disallows the monitor to have perfect information on the actual AoII process at any time. Hence, for this pull-based system, we propose the monitor to maintain a sufficient statistic called {\em belief} which stands for the joint distribution of the age and source processes to be obtained from the history of all observations. Using belief, we first propose a maximum a posteriori (MAP) estimator to be used at the monitor as opposed to existing martingale estimators in the literature. Second, we obtain the optimality equations from the belief-MDP (Markov decision process) formulation. Finally, we propose two belief-dependent policies one of which is based on deep reinforcement learning, and the other one is a threshold-based policy based on the instantaneous expected AoII.
Abstract:We consider a gossiping network, where a source node sends updates to a network of $n$ gossiping nodes. Meanwhile, the connectivity topology of the gossiping network changes over time, among a finite number of connectivity ''states,'' such as the fully connected graph, the ring graph, the grid graph, etc. The transition of the connectivity graph among the possible options is governed by a finite state continuous time Markov chain (CTMC). When the CTMC is in a particular state, the associated graph topology of the gossiping network is in the way indicated by that state. We evaluate the impact of time-varying graph topologies on the freshness of information for nodes in the network. We use the version age of information metric to quantify the freshness of information at the nodes. Using a method similar to the first passage percolation method, we show that, if one of the states of the CTMC is the fully connected graph and the transition rates of the CTMC are constant, then the version age of a typical node in the network scales logarithmically with the number of nodes, as in the case if the network was always fully connected. That is, there is no loss in the age scaling, even if the network topology deviates from full connectivity, in this setting. We perform numerical simulations and analyze more generally how having different topologies and different CTMC rates (that might depend on the number of nodes) affect the average version age scaling of a node in the gossiping network.
Abstract:Federated learning (FL) is a collaborative approach where multiple clients, coordinated by a parameter server (PS), train a unified machine-learning model. The approach, however, suffers from two key challenges: data heterogeneity and communication overhead. Data heterogeneity refers to inconsistencies in model training arising from heterogeneous data at different clients. Communication overhead arises from the large volumes of parameter updates exchanged between the PS and clients. Existing solutions typically address these challenges separately. This paper introduces a new communication-efficient algorithm that uses the age of information metric to simultaneously tackle both limitations of FL. We introduce age vectors at the PS, which keep track of how often the different model parameters are updated from the clients. The PS uses this to selectively request updates for specific gradient indices from each client. Further, the PS employs age vectors to identify clients with statistically similar data and group them into clusters. The PS combines the age vectors of the clustered clients to efficiently coordinate gradient index updates among clients within a cluster. We evaluate our approach using the MNIST and CIFAR10 datasets in highly non-i.i.d. settings. The experimental results show that our proposed method can expedite training, surpassing other communication-efficient strategies in efficiency.
Abstract:Transparency and explainability are two extremely important aspects to be considered when employing black-box machine learning models in high-stake applications. Providing counterfactual explanations is one way of catering this requirement. However, this also poses a threat to the privacy of both the institution that is providing the explanation as well as the user who is requesting it. In this work, we propose multiple schemes inspired by private information retrieval (PIR) techniques which ensure the \emph{user's privacy} when retrieving counterfactual explanations. We present a scheme which retrieves the \emph{exact} nearest neighbor counterfactual explanation from a database of accepted points while achieving perfect (information-theoretic) privacy for the user. While the scheme achieves perfect privacy for the user, some leakage on the database is inevitable which we quantify using a mutual information based metric. Furthermore, we propose strategies to reduce this leakage to achieve an advanced degree of database privacy. We extend these schemes to incorporate user's preference on transforming their attributes, so that a more actionable explanation can be received. Since our schemes rely on finite field arithmetic, we empirically validate our schemes on real datasets to understand the trade-off between the accuracy and the finite field sizes.
Abstract:We consider a wireless network where a source generates packets and forwards them to a network containing $n$ nodes. The nodes in the network use the asynchronous push, pull or push-pull gossip communication protocols to maintain the most recent updates from the source. We use the version age of information metric to quantify the freshness of information in the network. Prior to this work, only the push gossiping protocol has been studied for age of information analysis. In this paper, we use the stochastic hybrid systems (SHS) framework to obtain recursive equations for the expected version age of sets of nodes in the time limit. We then show that the pull and push-pull protocols can achieve constant version age, while it is already known that the push protocol can only achieve logarithmic version age. We then show that the push-pull protocol performs better than the push and the pull protocol. Finally, we carry out numerical simulations to evaluate these results.
Abstract:We consider a gossiping network where a source forwards updates to a set of $n$ gossiping nodes that are placed in an arbitrary graph structure and gossip with their neighbors. In this paper, we analyze how mobility of nodes affects the freshness of nodes in the gossiping network. To model mobility, we let nodes randomly exchange positions with other nodes in the network. The position of the node determines how the node interacts with the rest of the network. In order to quantify information freshness, we use the version age of information metric. We use the stochastic hybrid system (SHS) framework to derive recursive equations to find the version age for a set of positions in the network in terms of the version ages of sets of positions that are one larger or of the same size. We use these recursive equations to find an upper bound for the average version age of a node in two example networks. We show that mobility can decrease the version age of nodes in a disconnected network from linear scaling in $n$ to at most square root scaling and even to constant scaling in some cases. We perform numerical simulations to analyze how mobility affects the version age of different positions in the network and also show that the upper bounds obtained for the example networks are tight.