Abstract:The paramount challenge in audio-driven One-shot Talking Head Animation (ADOS-THA) lies in capturing subtle imperceptible changes between adjacent video frames. Inherently, the temporal relationship of adjacent audio clips is highly correlated with that of the corresponding adjacent video frames, offering supplementary information that can be pivotal for guiding and supervising talking head animations. In this work, we propose to learn audio-visual correlations and integrate the correlations to help enhance feature representation and regularize final generation by a novel Temporal Audio-Visual Correlation Embedding (TAVCE) framework. Specifically, it first learns an audio-visual temporal correlation metric, ensuring the temporal audio relationships of adjacent clips are aligned with the temporal visual relationships of corresponding adjacent video frames. Since the temporal audio relationship contains aligned information about the visual frame, we first integrate it to guide learning more representative features via a simple yet effective channel attention mechanism. During training, we also use the alignment correlations as an additional objective to supervise generating visual frames. We conduct extensive experiments on several publicly available benchmarks (i.e., HDTF, LRW, VoxCeleb1, and VoxCeleb2) to demonstrate its superiority over existing leading algorithms.
Abstract:Speech-preserving facial expression manipulation (SPFEM) aims to modify a talking head to display a specific reference emotion while preserving the mouth animation of source spoken contents. Thus, emotion and content information existing in reference and source inputs can provide direct and accurate supervision signals for SPFEM models. However, the intrinsic intertwining of these elements during the talking process poses challenges to their effectiveness as supervisory signals. In this work, we propose to learn content and emotion priors as guidance augmented with contrastive learning to learn decoupled content and emotion representation via an innovative Contrastive Decoupled Representation Learning (CDRL) algorithm. Specifically, a Contrastive Content Representation Learning (CCRL) module is designed to learn audio feature, which primarily contains content information, as content priors to guide learning content representation from the source input. Meanwhile, a Contrastive Emotion Representation Learning (CERL) module is proposed to make use of a pre-trained visual-language model to learn emotion prior, which is then used to guide learning emotion representation from the reference input. We further introduce emotion-aware and emotion-augmented contrastive learning to train CCRL and CERL modules, respectively, ensuring learning emotion-independent content representation and content-independent emotion representation. During SPFEM model training, the decoupled content and emotion representations are used to supervise the generation process, ensuring more accurate emotion manipulation together with audio-lip synchronization. Extensive experiments and evaluations on various benchmarks show the effectiveness of the proposed algorithm.
Abstract:In this work, we introduce Monocular and Generalizable Gaussian Talking Head Animation (MGGTalk), which requires monocular datasets and generalizes to unseen identities without personalized re-training. Compared with previous 3D Gaussian Splatting (3DGS) methods that requires elusive multi-view datasets or tedious personalized learning/inference, MGGtalk enables more practical and broader applications. However, in the absence of multi-view and personalized training data, the incompleteness of geometric and appearance information poses a significant challenge. To address these challenges, MGGTalk explores depth information to enhance geometric and facial symmetry characteristics to supplement both geometric and appearance features. Initially, based on the pixel-wise geometric information obtained from depth estimation, we incorporate symmetry operations and point cloud filtering techniques to ensure a complete and precise position parameter for 3DGS. Subsequently, we adopt a two-stage strategy with symmetric priors for predicting the remaining 3DGS parameters. We begin by predicting Gaussian parameters for the visible facial regions of the source image. These parameters are subsequently utilized to improve the prediction of Gaussian parameters for the non-visible regions. Extensive experiments demonstrate that MGGTalk surpasses previous state-of-the-art methods, achieving superior performance across various metrics.
Abstract:Multi-label recognition with partial labels (MLR-PL), in which only some labels are known while others are unknown for each image, is a practical task in computer vision, since collecting large-scale and complete multi-label datasets is difficult in real application scenarios. Recently, vision language models (e.g. CLIP) have demonstrated impressive transferability to downstream tasks in data limited or label limited settings. However, current CLIP-based methods suffer from semantic confusion in MLR task due to the lack of fine-grained information in the single global visual and textual representation for all categories. In this work, we address this problem by introducing a semantic decoupling module and a category-specific prompt optimization method in CLIP-based framework. Specifically, the semantic decoupling module following the visual encoder learns category-specific feature maps by utilizing the semantic-guided spatial attention mechanism. Moreover, the category-specific prompt optimization method is introduced to learn text representations aligned with category semantics. Therefore, the prediction of each category is independent, which alleviate the semantic confusion problem. Extensive experiments on Microsoft COCO 2014 and Pascal VOC 2007 datasets demonstrate that the proposed framework significantly outperforms current state-of-art methods with a simpler model structure. Additionally, visual analysis shows that our method effectively separates information from different categories and achieves better performance compared to CLIP-based baseline method.
Abstract:Hard negative generation aims to generate informative negative samples that help to determine the decision boundaries and thus facilitate advancing deep metric learning. Current works select pair/triplet samples, learn their correlations, and fuse them to generate hard negatives. However, these works merely consider the local correlations of selected samples, ignoring global sample correlations that would provide more significant information to generate more informative negatives. In this work, we propose a Globally Correlation-Aware Hard Negative Generation (GCA-HNG) framework, which first learns sample correlations from a global perspective and exploits these correlations to guide generating hardness-adaptive and diverse negatives. Specifically, this approach begins by constructing a structured graph to model sample correlations, where each node represents a specific sample and each edge represents the correlations between corresponding samples. Then, we introduce an iterative graph message propagation to propagate the messages of node and edge through the whole graph and thus learn the sample correlations globally. Finally, with the guidance of the learned global correlations, we propose a channel-adaptive manner to combine an anchor and multiple negatives for HNG. Compared to current methods, GCA-HNG allows perceiving sample correlations with numerous negatives from a global and comprehensive perspective and generates the negatives with better hardness and diversity. Extensive experiment results demonstrate that the proposed GCA-HNG is superior to related methods on four image retrieval benchmark datasets. Codes and trained models are available at \url{https://github.com/PWenJay/GCA-HNG}.
Abstract:Recent progress in blind face restoration has resulted in producing high-quality restored results for static images. However, efforts to extend these advancements to video scenarios have been minimal, partly because of the absence of benchmarks that allow for a comprehensive and fair comparison. In this work, we first present a fair evaluation benchmark, in which we first introduce a Real-world Low-Quality Face Video benchmark (RFV-LQ), evaluate several leading image-based face restoration algorithms, and conduct a thorough systematical analysis of the benefits and challenges associated with extending blind face image restoration algorithms to degraded face videos. Our analysis identifies several key issues, primarily categorized into two aspects: significant jitters in facial components and noise-shape flickering between frames. To address these issues, we propose a Temporal Consistency Network (TCN) cooperated with alignment smoothing to reduce jitters and flickers in restored videos. TCN is a flexible component that can be seamlessly plugged into the most advanced face image restoration algorithms, ensuring the quality of image-based restoration is maintained as closely as possible. Extensive experiments have been conducted to evaluate the effectiveness and efficiency of our proposed TCN and alignment smoothing operation. Project page: https://wzhouxiff.github.io/projects/FIR2FVR/FIR2FVR.
Abstract:Modern visual recognition models often display overconfidence due to their reliance on complex deep neural networks and one-hot target supervision, resulting in unreliable confidence scores that necessitate calibration. While current confidence calibration techniques primarily address single-label scenarios, there is a lack of focus on more practical and generalizable multi-label contexts. This paper introduces the Multi-Label Confidence Calibration (MLCC) task, aiming to provide well-calibrated confidence scores in multi-label scenarios. Unlike single-label images, multi-label images contain multiple objects, leading to semantic confusion and further unreliability in confidence scores. Existing single-label calibration methods, based on label smoothing, fail to account for category correlations, which are crucial for addressing semantic confusion, thereby yielding sub-optimal performance. To overcome these limitations, we propose the Dynamic Correlation Learning and Regularization (DCLR) algorithm, which leverages multi-grained semantic correlations to better model semantic confusion for adaptive regularization. DCLR learns dynamic instance-level and prototype-level similarities specific to each category, using these to measure semantic correlations across different categories. With this understanding, we construct adaptive label vectors that assign higher values to categories with strong correlations, thereby facilitating more effective regularization. We establish an evaluation benchmark, re-implementing several advanced confidence calibration algorithms and applying them to leading multi-label recognition (MLR) models for fair comparison. Through extensive experiments, we demonstrate the superior performance of DCLR over existing methods in providing reliable confidence scores in multi-label scenarios.
Abstract:Recently, researchers have proposed various deep learning methods to accurately detect infrared targets with the characteristics of indistinct shape and texture. Due to the limited variety of infrared datasets, training deep learning models with good generalization poses a challenge. To augment the infrared dataset, researchers employ data augmentation techniques, which often involve generating new images by combining images from different datasets. However, these methods are lacking in two respects. In terms of realism, the images generated by mixup-based methods lack realism and are difficult to effectively simulate complex real-world scenarios. In terms of diversity, compared with real-world scenes, borrowing knowledge from another dataset inherently has a limited diversity. Currently, the diffusion model stands out as an innovative generative approach. Large-scale trained diffusion models have a strong generative prior that enables real-world modeling of images to generate diverse and realistic images. In this paper, we propose Diff-Mosaic, a data augmentation method based on the diffusion model. This model effectively alleviates the challenge of diversity and realism of data augmentation methods via diffusion prior. Specifically, our method consists of two stages. Firstly, we introduce an enhancement network called Pixel-Prior, which generates highly coordinated and realistic Mosaic images by harmonizing pixels. In the second stage, we propose an image enhancement strategy named Diff-Prior. This strategy utilizes diffusion priors to model images in the real-world scene, further enhancing the diversity and realism of the images. Extensive experiments have demonstrated that our approach significantly improves the performance of the detection network. The code is available at https://github.com/YupeiLin2388/Diff-Mosaic
Abstract:Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER) due to the distribution variation across different domains. Current works mainly focus on learning domain-invariant features through global feature adaptation, while neglecting the transferability of local features. Additionally, these methods lack discriminative supervision during training on target datasets, resulting in deteriorated feature representation in target domain. To address these limitations, we propose an Adaptive Global-Local Representation Learning and Selection (AGLRLS) framework. The framework incorporates global-local adversarial adaptation and semantic-aware pseudo label generation to enhance the learning of domain-invariant and discriminative feature during training. Meanwhile, a global-local prediction consistency learning is introduced to improve classification results during inference. Specifically, the framework consists of separate global-local adversarial learning modules that learn domain-invariant global and local features independently. We also design a semantic-aware pseudo label generation module, which computes semantic labels based on global and local features. Moreover, a novel dynamic threshold strategy is employed to learn the optimal thresholds by leveraging independent prediction of global and local features, ensuring filtering out the unreliable pseudo labels while retaining reliable ones. These labels are utilized for model optimization through the adversarial learning process in an end-to-end manner. During inference, a global-local prediction consistency module is developed to automatically learn an optimal result from multiple predictions. We conduct comprehensive experiments and analysis based on a fair evaluation benchmark. The results demonstrate that the proposed framework outperforms the current competing methods by a substantial margin.
Abstract:Speech-driven 3D facial animation aims to synthesize vivid facial animations that accurately synchronize with speech and match the unique speaking style. However, existing works primarily focus on achieving precise lip synchronization while neglecting to model the subject-specific speaking style, often resulting in unrealistic facial animations. To the best of our knowledge, this work makes the first attempt to explore the coupled information between the speaking style and the semantic content in facial motions. Specifically, we introduce an innovative speaking style disentanglement method, which enables arbitrary-subject speaking style encoding and leads to a more realistic synthesis of speech-driven facial animations. Subsequently, we propose a novel framework called \textbf{Mimic} to learn disentangled representations of the speaking style and content from facial motions by building two latent spaces for style and content, respectively. Moreover, to facilitate disentangled representation learning, we introduce four well-designed constraints: an auxiliary style classifier, an auxiliary inverse classifier, a content contrastive loss, and a pair of latent cycle losses, which can effectively contribute to the construction of the identity-related style space and semantic-related content space. Extensive qualitative and quantitative experiments conducted on three publicly available datasets demonstrate that our approach outperforms state-of-the-art methods and is capable of capturing diverse speaking styles for speech-driven 3D facial animation. The source code and supplementary video are publicly available at: https://zeqing-wang.github.io/Mimic/