Abstract:While deep neural networks have achieved remarkable performance, they tend to lack transparency in prediction. The pursuit of greater interpretability in neural networks often results in a degradation of their original performance. Some works strive to improve both interpretability and performance, but they primarily depend on meticulously imposed conditions. In this paper, we propose a simple yet effective framework that acquires more explainable activation heatmaps and simultaneously increase the model performance, without the need for any extra supervision. Specifically, our concise framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning. The explanation consistency metric is utilized to measure the similarity between the model's visual explanations of the original samples and those of semantic-preserved adversarial samples, whose background regions are perturbed by using image adversarial attack techniques. Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations (i.e., low explanation consistency), for which the current model cannot provide robust interpretations. Comprehensive experimental results on various benchmarks demonstrate the superiority of our framework in multiple aspects, including higher recognition accuracy, greater data debiasing capability, stronger network robustness, and more precise localization ability on both regular networks and interpretable networks. We also provide extensive ablation studies and qualitative analyses to unveil the detailed contribution of each component.
Abstract:Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
Abstract:Neural Radiance Fields (NeRF) have garnered remarkable success in novel view synthesis. Nonetheless, the task of generating high-quality images for novel views persists as a critical challenge. While the existing efforts have exhibited commendable progress, capturing intricate details, enhancing textures, and achieving superior Peak Signal-to-Noise Ratio (PSNR) metrics warrant further focused attention and advancement. In this work, we propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges. Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages, with the aspiration that the prior knowledge embedded in the prompts can facilitate the gradual enhancement of rendered image quality. NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques. Thus, our NeRF-VPT is plug-and-play and can be readily integrated into existing methods. By conducting comparative analyses of our NeRF-VPT against several NeRF-based approaches on demanding real-scene benchmarks, such as Realistic Synthetic 360, Real Forward-Facing, Replica dataset, and a user-captured dataset, we substantiate that our NeRF-VPT significantly elevates baseline performance and proficiently generates more high-quality novel view images than all the compared state-of-the-art methods. Furthermore, the cascading learning of NeRF-VPT introduces adaptability to scenarios with sparse inputs, resulting in a significant enhancement of accuracy for sparse-view novel view synthesis. The source code and dataset are available at \url{https://github.com/Freedomcls/NeRF-VPT}.
Abstract:Recently, Vision Transformer has achieved great success in recovering missing details in low-resolution sequences, i.e., the video super-resolution (VSR) task. Despite its superiority in VSR accuracy, the heavy computational burden as well as the large memory footprint hinder the deployment of Transformer-based VSR models on constrained devices. In this paper, we address the above issue by proposing a novel feature-level masked processing framework: VSR with Masked Intra and inter frame Attention (MIA-VSR). The core of MIA-VSR is leveraging feature-level temporal continuity between adjacent frames to reduce redundant computations and make more rational use of previously enhanced SR features. Concretely, we propose an intra-frame and inter-frame attention block which takes the respective roles of past features and input features into consideration and only exploits previously enhanced features to provide supplementary information. In addition, an adaptive block-wise mask prediction module is developed to skip unimportant computations according to feature similarity between adjacent frames. We conduct detailed ablation studies to validate our contributions and compare the proposed method with recent state-of-the-art VSR approaches. The experimental results demonstrate that MIA-VSR improves the memory and computation efficiency over state-of-the-art methods, without trading off PSNR accuracy. The code is available at https://github.com/LabShuHangGU/MIA-VSR.
Abstract:Speech-driven 3D facial animation aims to synthesize vivid facial animations that accurately synchronize with speech and match the unique speaking style. However, existing works primarily focus on achieving precise lip synchronization while neglecting to model the subject-specific speaking style, often resulting in unrealistic facial animations. To the best of our knowledge, this work makes the first attempt to explore the coupled information between the speaking style and the semantic content in facial motions. Specifically, we introduce an innovative speaking style disentanglement method, which enables arbitrary-subject speaking style encoding and leads to a more realistic synthesis of speech-driven facial animations. Subsequently, we propose a novel framework called \textbf{Mimic} to learn disentangled representations of the speaking style and content from facial motions by building two latent spaces for style and content, respectively. Moreover, to facilitate disentangled representation learning, we introduce four well-designed constraints: an auxiliary style classifier, an auxiliary inverse classifier, a content contrastive loss, and a pair of latent cycle losses, which can effectively contribute to the construction of the identity-related style space and semantic-related content space. Extensive qualitative and quantitative experiments conducted on three publicly available datasets demonstrate that our approach outperforms state-of-the-art methods and is capable of capturing diverse speaking styles for speech-driven 3D facial animation. The source code and supplementary video are publicly available at: https://zeqing-wang.github.io/Mimic/
Abstract:Recently, Vision Language Models (VLMs) have gained significant attention, exhibiting notable advancements across various tasks by leveraging extensive image-text paired data. However, prevailing VLMs often treat Visual Question Answering (VQA) as perception tasks, employing black-box models that overlook explicit modeling of relationships between different questions within the same visual scene. Moreover, the existing VQA methods that rely on Knowledge Bases (KBs) might frequently encounter biases from limited data and face challenges in relevant information indexing. Attempt to overcome these limitations, this paper introduces an explainable multi-agent collaboration framework by tapping into knowledge embedded in Large Language Models (LLMs) trained on extensive corpora. Inspired by human cognition, our framework uncovers latent information within the given question by employing three agents, i.e., Seeker, Responder, and Integrator, to perform a top-down reasoning process. The Seeker agent generates relevant issues related to the original question. The Responder agent, based on VLM, handles simple VQA tasks and provides candidate answers. The Integrator agent combines information from the Seeker agent and the Responder agent to produce the final VQA answer. Through the above collaboration mechanism, our framework explicitly constructs a multi-view knowledge base for a specific image scene, reasoning answers in a top-down processing manner. We extensively evaluate our method on diverse VQA datasets and VLMs, demonstrating its broad applicability and interpretability with comprehensive experimental results.
Abstract:The class-agnostic counting (CAC) task has recently been proposed to solve the problem of counting all objects of an arbitrary class with several exemplars given in the input image. To address this challenging task, existing leading methods all resort to density map regression, which renders them impractical for downstream tasks that require object locations and restricts their ability to well explore the scale information of exemplars for supervision. To address the limitations, we propose a novel localization-based CAC approach, termed Scale-modulated Query and Localization Network (SQLNet). It fully explores the scales of exemplars in both the query and localization stages and achieves effective counting by accurately locating each object and predicting its approximate size. Specifically, during the query stage, rich discriminative representations of the target class are acquired by the Hierarchical Exemplars Collaborative Enhancement (HECE) module from the few exemplars through multi-scale exemplar cooperation with equifrequent size prompt embedding. These representations are then fed into the Exemplars-Unified Query Correlation (EUQC) module to interact with the query features in a unified manner and produce the correlated query tensor. In the localization stage, the Scale-aware Multi-head Localization (SAML) module utilizes the query tensor to predict the confidence, location, and size of each potential object. Moreover, a scale-aware localization loss is introduced, which exploits flexible location associations and exemplar scales for supervision to optimize the model performance. Extensive experiments demonstrate that SQLNet outperforms state-of-the-art methods on popular CAC benchmarks, achieving excellent performance not only in counting accuracy but also in localization and bounding box generation. Our codes will be available at https://github.com/HCPLab-SYSU/SQLNet
Abstract:As an interpretable and universal neuro-symbolic paradigm based on Large Language Models, visual programming (VisualProg) can execute compositional visual tasks without training, but its performance is markedly inferior compared to task-specific supervised learning models. To increase its practicality, the performance of VisualProg on specific tasks needs to be improved. However, the non-differentiability of VisualProg limits the possibility of employing the fine-tuning strategy on specific tasks to achieve further improvements. In our analysis, we discovered that significant performance issues in VisualProg's execution originated from errors made by the sub-modules at corresponding visual sub-task steps. To address this, we propose ``VisualProg Distiller", a method of supplementing and distilling process knowledge to optimize the performance of each VisualProg sub-module on decoupled visual sub-tasks, thus enhancing the overall task performance. Specifically, we choose an end-to-end model that is well-performed on the given task as the teacher and further distill the knowledge of the teacher into the invoked visual sub-modules step-by-step based on the execution flow of the VisualProg-generated programs. In this way, our method is capable of facilitating the fine-tuning of the non-differentiable VisualProg frameworks effectively. Extensive and comprehensive experimental evaluations demonstrate that our method can achieve a substantial performance improvement of VisualProg, and outperforms all the compared state-of-the-art methods by large margins. Furthermore, to provide valuable process supervision for the GQA task, we construct a large-scale dataset by utilizing the distillation process of our method.
Abstract:Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoners and an evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the \textit{evaluator} agent scrutinizes if a solution is deducible from a non-causal perspective and if it still holds when challenged by a counterfactual candidate. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.
Abstract:Video self-supervised learning is a challenging task, which requires significant expressive power from the model to leverage rich spatial-temporal knowledge and generate effective supervisory signals from large amounts of unlabeled videos. However, existing methods fail to increase the temporal diversity of unlabeled videos and ignore elaborately modeling multi-scale temporal dependencies in an explicit way. To overcome these limitations, we take advantage of the multi-scale temporal dependencies within videos and proposes a novel video self-supervised learning framework named Temporal Contrastive Graph Learning (TCGL), which jointly models the inter-snippet and intra-snippet temporal dependencies for temporal representation learning with a hybrid graph contrastive learning strategy. Specifically, a Spatial-Temporal Knowledge Discovering (STKD) module is first introduced to extract motion-enhanced spatial-temporal representations from videos based on the frequency domain analysis of discrete cosine transform. To explicitly model multi-scale temporal dependencies of unlabeled videos, our TCGL integrates the prior knowledge about the frame and snippet orders into graph structures, i.e., the intra-/inter- snippet Temporal Contrastive Graphs (TCG). Then, specific contrastive learning modules are designed to maximize the agreement between nodes in different graph views. To generate supervisory signals for unlabeled videos, we introduce an Adaptive Snippet Order Prediction (ASOP) module which leverages the relational knowledge among video snippets to learn the global context representation and recalibrate the channel-wise features adaptively. Experimental results demonstrate the superiority of our TCGL over the state-of-the-art methods on large-scale action recognition and video retrieval benchmarks.The code is publicly available at https://github.com/YangLiu9208/TCGL.