Abstract:Accurate prediction of metro traffic is crucial for optimizing metro scheduling and enhancing overall transport efficiency. Analyzing fine-grained and comprehensive relations among stations effectively is imperative for metro Origin-Destination (OD) prediction. However, existing metro OD models either mix information from multiple OD pairs from the station's perspective or exclusively focus on a subset of OD pairs. These approaches may overlook fine-grained relations among OD pairs, leading to difficulties in predicting potential anomalous conditions. To address these challenges, we analyze traffic variations from the perspective of all OD pairs and propose a fine-grained spatial-temporal MLP architecture for metro OD prediction, namely ODMixer. Specifically, our ODMixer has double-branch structure and involves the Channel Mixer, the Multi-view Mixer, and the Bidirectional Trend Learner. The Channel Mixer aims to capture short-term temporal relations among OD pairs, the Multi-view Mixer concentrates on capturing relations from both origin and destination perspectives. To model long-term temporal relations, we introduce the Bidirectional Trend Learner. Extensive experiments on two large-scale metro OD prediction datasets HZMOD and SHMO demonstrate the advantages of our ODMixer. The code will be available.
Abstract:Computational aesthetic evaluation has made remarkable contribution to visual art works, but its application to music is still rare. Currently, subjective evaluation is still the most effective form of evaluating artistic works. However, subjective evaluation of artistic works will consume a lot of human and material resources. The popular AI generated content (AIGC) tasks nowadays have flooded all industries, and music is no exception. While compared to music produced by humans, AI generated music still sounds mechanical, monotonous, and lacks aesthetic appeal. Due to the lack of music datasets with rating annotations, we have to choose traditional aesthetic equations to objectively measure the beauty of music. In order to improve the quality of AI music generation and further guide computer music production, synthesis, recommendation and other tasks, we use Birkhoff's aesthetic measure to design a aesthetic model, objectively measuring the aesthetic beauty of music, and form a recommendation list according to the aesthetic feeling of music. Experiments show that our objective aesthetic model and recommendation method are effective.
Abstract:Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels de-confounded from the environments, advancing the technical roadmap of out-of-distribution (OOD) generalization. Despite spotlights around, recent theoretical results verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains. The \emph{fake invariance} severely endangers OOD generalization since the trustful objective can not be diagnosed and existing causal surgeries are invalid to rectify. In this paper, we review a IRL family (InvRat) under the Partially and Fully Informative Invariant Feature Structural Causal Models (PIIF SCM /FIIF SCM) respectively, to certify their weaknesses in representing fake invariant features, then, unify their causal diagrams to propose ReStructured SCM (RS-SCM). RS-SCM can ideally rebuild the spurious and the fake invariant features simultaneously. Given this, we further develop an approach based on conditional mutual information with respect to RS-SCM, then rigorously rectify the spurious and fake invariant effects. It can be easily implemented by a small feature selection subnet introduced in the IRL family, which is alternatively optimized to achieve our goal. Experiments verified the superiority of our approach to fight against the fake invariant issue across a variety of OOD generalization benchmarks.