Abstract:While deep neural networks have achieved remarkable performance, they tend to lack transparency in prediction. The pursuit of greater interpretability in neural networks often results in a degradation of their original performance. Some works strive to improve both interpretability and performance, but they primarily depend on meticulously imposed conditions. In this paper, we propose a simple yet effective framework that acquires more explainable activation heatmaps and simultaneously increase the model performance, without the need for any extra supervision. Specifically, our concise framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning. The explanation consistency metric is utilized to measure the similarity between the model's visual explanations of the original samples and those of semantic-preserved adversarial samples, whose background regions are perturbed by using image adversarial attack techniques. Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations (i.e., low explanation consistency), for which the current model cannot provide robust interpretations. Comprehensive experimental results on various benchmarks demonstrate the superiority of our framework in multiple aspects, including higher recognition accuracy, greater data debiasing capability, stronger network robustness, and more precise localization ability on both regular networks and interpretable networks. We also provide extensive ablation studies and qualitative analyses to unveil the detailed contribution of each component.
Abstract:Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoners and an evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the \textit{evaluator} agent scrutinizes if a solution is deducible from a non-causal perspective and if it still holds when challenged by a counterfactual candidate. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.
Abstract:Deep learning models are challenged by the distribution shift between the training data and test data. Recently, the large models pre-trained on diverse data demonstrate unprecedented robustness to various distribution shifts. However, fine-tuning on these models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness. Existing methods for tackling this trade-off do not explicitly address the OOD robustness problem. In this paper, based on causal analysis on the aforementioned problems, we propose a novel fine-tuning method, which use masked images as counterfactual samples that help improving the robustness of the fine-tuning model. Specifically, we mask either the semantics-related or semantics-unrelated patches of the images based on class activation map to break the spurious correlation, and refill the masked patches with patches from other images. The resulting counterfactual samples are used in feature-based distillation with the pre-trained model. Extensive experiments verify that regularizing the fine-tuning with the proposed masked images can achieve a better trade-off between ID and OOD performance, surpassing previous methods on the OOD performance. Our code will be publicly available.
Abstract:In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.