Abstract:Chain-of-Thought reasoning has significantly enhanced the problem-solving capabilities of Large Language Models. Unfortunately, current models generate reasoning steps sequentially without foresight, often becoming trapped in suboptimal reasoning paths with redundant steps. In contrast, we introduce Neural Chain-of-Thought Search (NCoTS), a framework that reformulates reasoning as a dynamic search for the optimal thinking strategy. By quantitatively characterizing the solution space, we reveal the existence of sparse superior reasoning paths that are simultaneously more accurate and concise than standard outputs. Our method actively navigates towards these paths by evaluating candidate reasoning operators using a dual-factor heuristic that optimizes for both correctness and computational cost. Consequently, NCoTS achieves a Pareto improvement across diverse reasoning benchmarks, boosting accuracy by over 3.5% while reducing generation length by over 22%. Our code and data are available at https://github.com/MilkThink-Lab/Neural-CoT-Search.
Abstract:Egocentric Referring Video Object Segmentation (Ego-RVOS) aims to segment the specific object actively involved in a human action, as described by a language query, within first-person videos. This task is critical for understanding egocentric human behavior. However, achieving such segmentation robustly is challenging due to ambiguities inherent in egocentric videos and biases present in training data. Consequently, existing methods often struggle, learning spurious correlations from skewed object-action pairings in datasets and fundamental visual confounding factors of the egocentric perspective, such as rapid motion and frequent occlusions. To address these limitations, we introduce Causal Ego-REferring Segmentation (CERES), a plug-in causal framework that adapts strong, pre-trained RVOS backbones to the egocentric domain. CERES implements dual-modal causal intervention: applying backdoor adjustment principles to counteract language representation biases learned from dataset statistics, and leveraging front-door adjustment concepts to address visual confounding by intelligently integrating semantic visual features with geometric depth information guided by causal principles, creating representations more robust to egocentric distortions. Extensive experiments demonstrate that CERES achieves state-of-the-art performance on Ego-RVOS benchmarks, highlighting the potential of applying causal reasoning to build more reliable models for broader egocentric video understanding.
Abstract:Knowledge Editing (KE) is a field that studies how to modify some knowledge in Large Language Models (LLMs) at a low cost (compared to pre-training). Currently, performing large-scale edits on LLMs while ensuring the Reliability, Generality, and Locality metrics of the edits remain a challenge. This paper proposes a Massive editing approach for LLMs based on dynamic weight Generation (MeG). Our MeG involves attaching a dynamic weight neuron to specific layers of the LLMs and using a diffusion model to conditionally generate the weights of this neuron based on the input query required for the knowledge. This allows the use of adding a single dynamic weight neuron to achieve the goal of large-scale knowledge editing. Experiments show that our MeG can significantly improve the performance of large-scale KE in terms of Reliability, Generality, and Locality metrics compared to existing knowledge editing methods, particularly with a high percentage point increase in the absolute value index for the Locality metric, demonstrating the advantages of our proposed method.
Abstract:Open-Vocabulary Multi-Label Recognition (OV-MLR) aims to identify multiple seen and unseen object categories within an image, requiring both precise intra-class localization to pinpoint objects and effective inter-class reasoning to model complex category dependencies. While Vision-Language Pre-training (VLP) models offer a strong open-vocabulary foundation, they often struggle with fine-grained localization under weak supervision and typically fail to explicitly leverage structured relational knowledge beyond basic semantics, limiting performance especially for unseen classes. To overcome these limitations, we propose the Dual Adaptive Refinement Transfer (DART) framework. DART enhances a frozen VLP backbone via two synergistic adaptive modules. For intra-class refinement, an Adaptive Refinement Module (ARM) refines patch features adaptively, coupled with a novel Weakly Supervised Patch Selecting (WPS) loss that enables discriminative localization using only image-level labels. Concurrently, for inter-class transfer, an Adaptive Transfer Module (ATM) leverages a Class Relationship Graph (CRG), constructed using structured knowledge mined from a Large Language Model (LLM), and employs graph attention network to adaptively transfer relational information between class representations. DART is the first framework, to our knowledge, to explicitly integrate external LLM-derived relational knowledge for adaptive inter-class transfer while simultaneously performing adaptive intra-class refinement under weak supervision for OV-MLR. Extensive experiments on challenging benchmarks demonstrate that our DART achieves new state-of-the-art performance, validating its effectiveness.




Abstract:Long Context Understanding (LCU) is a critical area for exploration in current large language models (LLMs). However, due to the inherently lengthy nature of long-text data, existing LCU benchmarks for LLMs often result in prohibitively high evaluation costs, like testing time and inference expenses. Through extensive experimentation, we discover that existing LCU benchmarks exhibit significant redundancy, which means the inefficiency in evaluation. In this paper, we propose a concise data compression method tailored for long-text data with sparse information characteristics. By pruning the well-known LCU benchmark LongBench, we create MiniLongBench. This benchmark includes only 237 test samples across six major task categories and 21 distinct tasks. Through empirical analysis of over 60 LLMs, MiniLongBench achieves an average evaluation cost reduced to only 4.5% of the original while maintaining an average rank correlation coefficient of 0.97 with LongBench results. Therefore, our MiniLongBench, as a low-cost benchmark, holds great potential to substantially drive future research into the LCU capabilities of LLMs. See https://github.com/MilkThink-Lab/MiniLongBench for our code, data and tutorial.




Abstract:Operating robots in open-ended scenarios with diverse tasks is a crucial research and application direction in robotics. While recent progress in natural language processing and large multimodal models has enhanced robots' ability to understand complex instructions, robot manipulation still faces the procedural skill dilemma and the declarative skill dilemma in open environments. Existing methods often compromise cognitive and executive capabilities. To address these challenges, in this paper, we propose RoBridge, a hierarchical intelligent architecture for general robotic manipulation. It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM), an invariant operable representation (IOR) serving as a symbolic bridge, and a generalist embodied agent (GEA). RoBridge maintains the declarative skill of VLM and unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution. RoBridge demonstrates significant performance improvements over existing baselines, achieving a 75% success rate on new tasks and an 83% average success rate in sim-to-real generalization using only five real-world data samples per task. This work represents a significant step towards integrating cognitive reasoning with physical execution in robotic systems, offering a new paradigm for general robotic manipulation.




Abstract:Benefiting from the generalization capability of CLIP, recent vision language pre-training (VLP) models have demonstrated an impressive ability to capture virtually any visual concept in daily images. However, due to the presence of unseen categories in open-vocabulary settings, existing algorithms struggle to effectively capture strong semantic correlations between categories, resulting in sub-optimal performance on the open-vocabulary multi-label recognition (OV-MLR). Furthermore, the substantial variation in the number of discriminative areas across diverse object categories is misaligned with the fixed-number patch matching used in current methods, introducing noisy visual cues that hinder the accurate capture of target semantics. To tackle these challenges, we propose a novel category-adaptive cross-modal semantic refinement and transfer (C$^2$SRT) framework to explore the semantic correlation both within each category and across different categories, in a category-adaptive manner. The proposed framework consists of two complementary modules, i.e., intra-category semantic refinement (ISR) module and inter-category semantic transfer (IST) module. Specifically, the ISR module leverages the cross-modal knowledge of the VLP model to adaptively find a set of local discriminative regions that best represent the semantics of the target category. The IST module adaptively discovers a set of most correlated categories for a target category by utilizing the commonsense capabilities of LLMs to construct a category-adaptive correlation graph and transfers semantic knowledge from the correlated seen categories to unseen ones. Extensive experiments on OV-MLR benchmarks clearly demonstrate that the proposed C$^2$SRT framework outperforms current state-of-the-art algorithms.




Abstract:Generating lifelike 3D humans from a single RGB image remains a challenging task in computer vision, as it requires accurate modeling of geometry, high-quality texture, and plausible unseen parts. Existing methods typically use multi-view diffusion models for 3D generation, but they often face inconsistent view issues, which hinder high-quality 3D human generation. To address this, we propose Human-VDM, a novel method for generating 3D human from a single RGB image using Video Diffusion Models. Human-VDM provides temporally consistent views for 3D human generation using Gaussian Splatting. It consists of three modules: a view-consistent human video diffusion module, a video augmentation module, and a Gaussian Splatting module. First, a single image is fed into a human video diffusion module to generate a coherent human video. Next, the video augmentation module applies super-resolution and video interpolation to enhance the textures and geometric smoothness of the generated video. Finally, the 3D Human Gaussian Splatting module learns lifelike humans under the guidance of these high-resolution and view-consistent images. Experiments demonstrate that Human-VDM achieves high-quality 3D human from a single image, outperforming state-of-the-art methods in both generation quality and quantity. Project page: https://human-vdm.github.io/Human-VDM/




Abstract:While deep neural networks have achieved remarkable performance, they tend to lack transparency in prediction. The pursuit of greater interpretability in neural networks often results in a degradation of their original performance. Some works strive to improve both interpretability and performance, but they primarily depend on meticulously imposed conditions. In this paper, we propose a simple yet effective framework that acquires more explainable activation heatmaps and simultaneously increase the model performance, without the need for any extra supervision. Specifically, our concise framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning. The explanation consistency metric is utilized to measure the similarity between the model's visual explanations of the original samples and those of semantic-preserved adversarial samples, whose background regions are perturbed by using image adversarial attack techniques. Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations (i.e., low explanation consistency), for which the current model cannot provide robust interpretations. Comprehensive experimental results on various benchmarks demonstrate the superiority of our framework in multiple aspects, including higher recognition accuracy, greater data debiasing capability, stronger network robustness, and more precise localization ability on both regular networks and interpretable networks. We also provide extensive ablation studies and qualitative analyses to unveil the detailed contribution of each component.




Abstract:The rapid development of diffusion models has triggered diverse applications. Identity-preserving text-to-image generation (ID-T2I) particularly has received significant attention due to its wide range of application scenarios like AI portrait and advertising. While existing ID-T2I methods have demonstrated impressive results, several key challenges remain: (1) It is hard to maintain the identity characteristics of reference portraits accurately, (2) The generated images lack aesthetic appeal especially while enforcing identity retention, and (3) There is a limitation that cannot be compatible with LoRA-based and Adapter-based methods simultaneously. To address these issues, we present \textbf{ID-Aligner}, a general feedback learning framework to enhance ID-T2I performance. To resolve identity features lost, we introduce identity consistency reward fine-tuning to utilize the feedback from face detection and recognition models to improve generated identity preservation. Furthermore, we propose identity aesthetic reward fine-tuning leveraging rewards from human-annotated preference data and automatically constructed feedback on character structure generation to provide aesthetic tuning signals. Thanks to its universal feedback fine-tuning framework, our method can be readily applied to both LoRA and Adapter models, achieving consistent performance gains. Extensive experiments on SD1.5 and SDXL diffusion models validate the effectiveness of our approach. \textbf{Project Page: \url{https://idaligner.github.io/}}