Abstract:Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts. Nevertheless, TKGs are still limited in downstream applications due to the problem of incompleteness. Consequently, TKG completion (also known as link prediction) has been widely studied, with recent research focusing on incorporating independent embeddings of time or combining them with entities and relations to form temporal representations. However, most existing methods overlook the impact of history from a multi-granularity aspect. The inherent semantics of human-defined temporal granularities, such as ordinal dates, reveal general patterns to which facts typically adhere. To counter this limitation, this paper proposes \textbf{L}earning \textbf{G}ranularity \textbf{Re}presentation (termed $\mathsf{LGRe}$) for TKG completion. It comprises two main components: Granularity Representation Learning (GRL) and Adaptive Granularity Balancing (AGB). Specifically, GRL employs time-specific multi-layer convolutional neural networks to capture interactions between entities and relations at different granularities. After that, AGB generates adaptive weights for these embeddings according to temporal semantics, resulting in expressive representations of predictions. Moreover, to reflect similar semantics of adjacent timestamps, a temporal loss function is introduced. Extensive experimental results on four event benchmarks demonstrate the effectiveness of $\mathsf{LGRe}$ in learning time-related representations. To ensure reproducibility, our code is available at https://github.com/KcAcoZhang/LGRe.
Abstract:Temporal Knowledge Graph (TKG) reasoning focuses on predicting events through historical information within snapshots distributed on a timeline. Existing studies mainly concentrate on two perspectives of leveraging the history of TKGs, including capturing evolution of each recent snapshot or correlations among global historical facts. Despite the achieved significant accomplishments, these models still fall short of (1) investigating the influences of multi-granularity interactions across recent snapshots and (2) harnessing the expressive semantics of significant links accorded with queries throughout the entire history, especially events exerting a profound impact on the future. These inadequacies restrict representation ability to reflect historical dependencies and future trends thoroughly. To overcome these drawbacks, we propose an innovative TKG reasoning approach towards \textbf{His}torically \textbf{R}elevant \textbf{E}vents \textbf{S}tructuring ($\mathsf{HisRES}$). Concretely, $\mathsf{HisRES}$ comprises two distinctive modules excelling in structuring historically relevant events within TKGs, including a multi-granularity evolutionary encoder that captures structural and temporal dependencies of the most recent snapshots, and a global relevance encoder that concentrates on crucial correlations among events relevant to queries from the entire history. Furthermore, $\mathsf{HisRES}$ incorporates a self-gating mechanism for adaptively merging multi-granularity recent and historically relevant structuring representations. Extensive experiments on four event-based benchmarks demonstrate the state-of-the-art performance of $\mathsf{HisRES}$ and indicate the superiority and effectiveness of structuring historical relevance for TKG reasoning.
Abstract:Learning to recognize novel concepts from just a few image samples is very challenging as the learned model is easily overfitted on the few data and results in poor generalizability. One promising but underexplored solution is to compensate the novel classes by generating plausible samples. However, most existing works of this line exploit visual information only, rendering the generated data easy to be distracted by some challenging factors contained in the few available samples. Being aware of the semantic information in the textual modality that reflects human concepts, this work proposes a novel framework that exploits semantic relations to guide dual-view data hallucination for few-shot image recognition. The proposed framework enables generating more diverse and reasonable data samples for novel classes through effective information transfer from base classes. Specifically, an instance-view data hallucination module hallucinates each sample of a novel class to generate new data by employing local semantic correlated attention and global semantic feature fusion derived from base classes. Meanwhile, a prototype-view data hallucination module exploits semantic-aware measure to estimate the prototype of a novel class and the associated distribution from the few samples, which thereby harvests the prototype as a more stable sample and enables resampling a large number of samples. We conduct extensive experiments and comparisons with state-of-the-art methods on several popular few-shot benchmarks to verify the effectiveness of the proposed framework.
Abstract:Temporal Knowledge Graph (TKG) reasoning that forecasts future events based on historical snapshots distributed over timestamps is denoted as extrapolation and has gained significant attention. Owing to its extreme versatility and variation in spatial and temporal correlations, TKG reasoning presents a challenging task, demanding efficient capture of concurrent structures and evolutional interactions among facts. While existing methods have made strides in this direction, they still fall short of harnessing the diverse forms of intrinsic expressive semantics of TKGs, which encompass entity correlations across multiple timestamps and periodicity of temporal information. This limitation constrains their ability to thoroughly reflect historical dependencies and future trends. In response to these drawbacks, this paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS). Concretely, it comprises three distinct modules concentrating on multiple aspects of graph structure knowledge within TKGs, including concurrent and evolutional patterns along timestamps, query-specific correlations across timestamps, and semantic dependencies of timestamps, which capture TKG features from various perspectives. Besides, LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively. Moreover, it integrates timestamp semantics into graph attention calculations and time-aware decoders, in order to impose temporal constraints on events and narrow down prediction scopes with historical statistics. Extensive experimental results on five event-based benchmark datasets demonstrate that LMS outperforms state-of-the-art extrapolation models, indicating the superiority of modeling a multi-graph perspective for TKG reasoning.
Abstract:Continuous-time long-term event prediction plays an important role in many application scenarios. Most existing works rely on autoregressive frameworks to predict event sequences, which suffer from error accumulation, thus compromising prediction quality. Inspired by the success of denoising diffusion probabilistic models, we propose a diffusion-based non-autoregressive temporal point process model for long-term event prediction in continuous time. Instead of generating events one at a time in an autoregressive way, our model predicts the future event sequence entirely as a whole. In order to perform diffusion processes on event sequences, we develop a bidirectional map between target event sequences and the Euclidean vector space. Furthermore, we design a novel denoising network to capture both sequential and contextual features for better sample quality. Extensive experiments are conducted to prove the superiority of our proposed model over state-of-the-art methods on long-term event prediction in continuous time. To the best of our knowledge, this is the first work to apply diffusion methods to long-term event prediction problems.
Abstract:Event prediction in the continuous-time domain is a crucial but rather difficult task. Temporal point process (TPP) learning models have shown great advantages in this area. Existing models mainly focus on encoding global contexts of events using techniques like recurrent neural networks (RNNs) or self-attention mechanisms. However, local event contexts also play an important role in the occurrences of events, which has been largely ignored. Popular convolutional neural networks, which are designated for local context capturing, have never been applied to TPP modelling due to their incapability of modelling in continuous time. In this work, we propose a novel TPP modelling approach that combines local and global contexts by integrating a continuous-time convolutional event encoder with an RNN. The presented framework is flexible and scalable to handle large datasets with long sequences and complex latent patterns. The experimental result shows that the proposed model improves the performance of probabilistic sequential modelling and the accuracy of event prediction. To our best knowledge, this is the first work that applies convolutional neural networks to TPP modelling.
Abstract:Fake news detection aims to detect fake news widely spreading on social media platforms, which can negatively influence the public and the government. Many approaches have been developed to exploit relevant information from news images, text, or videos. However, these methods may suffer from the following limitations: (1) ignore the inherent emotional information of the news, which could be beneficial since it contains the subjective intentions of the authors; (2) pay little attention to the relation (similarity) between the title and textual information in news articles, which often use irrelevant title to attract reader' attention. To this end, we propose a novel Title-Text similarity and emotion-aware Fake news detection (TieFake) method by jointly modeling the multi-modal context information and the author sentiment in a unified framework. Specifically, we respectively employ BERT and ResNeSt to learn the representations for text and images, and utilize publisher emotion extractor to capture the author's subjective emotion in the news content. We also propose a scale-dot product attention mechanism to capture the similarity between title features and textual features. Experiments are conducted on two publicly available multi-modal datasets, and the results demonstrate that our proposed method can significantly improve the performance of fake news detection. Our code is available at https://github.com/UESTC-GQJ/TieFake.
Abstract:Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of \textcolor{blue}{the} aerospace industry. The time series telemetry data generated by on-orbit spacecraft \textcolor{blue}{contains} important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional \textcolor{blue}{features} for \textcolor{blue}{the} downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.
Abstract:Relation extraction (RE) has recently moved from the sentence-level to document-level, which requires aggregating document information and using entities and mentions for reasoning. Existing works put entity nodes and mention nodes with similar representations in a document-level graph, whose complex edges may incur redundant information. Furthermore, existing studies only focus on entity-level reasoning paths without considering global interactions among entities cross-sentence. To these ends, we propose a novel document-level RE model with a GRaph information Aggregation and Cross-sentence Reasoning network (GRACR). Specifically, a simplified document-level graph is constructed to model the semantic information of all mentions and sentences in a document, and an entity-level graph is designed to explore relations of long-distance cross-sentence entity pairs. Experimental results show that GRACR achieves excellent performance on two public datasets of document-level RE. It is especially effective in extracting potential relations of cross-sentence entity pairs. Our code is available at https://github.com/UESTC-LHF/GRACR.
Abstract:Recently many multi-label image recognition (MLR) works have made significant progress by introducing pre-trained object detection models to generate lots of proposals or utilizing statistical label co-occurrence enhance the correlation among different categories. However, these works have some limitations: (1) the effectiveness of the network significantly depends on pre-trained object detection models that bring expensive and unaffordable computation; (2) the network performance degrades when there exist occasional co-occurrence objects in images, especially for the rare categories. To address these problems, we propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category and capture semantic dependency among all categories. Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model to focus on semantic-aware regions. We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions to regularize the network training. Extensive experiments and comparisons on two popular MLR benchmark datasets (i.e., MS-COCO and Pascal VOC 2007) demonstrate the effectiveness of the proposed framework over current state-of-the-art algorithms.