Abstract:Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts. Nevertheless, TKGs are still limited in downstream applications due to the problem of incompleteness. Consequently, TKG completion (also known as link prediction) has been widely studied, with recent research focusing on incorporating independent embeddings of time or combining them with entities and relations to form temporal representations. However, most existing methods overlook the impact of history from a multi-granularity aspect. The inherent semantics of human-defined temporal granularities, such as ordinal dates, reveal general patterns to which facts typically adhere. To counter this limitation, this paper proposes \textbf{L}earning \textbf{G}ranularity \textbf{Re}presentation (termed $\mathsf{LGRe}$) for TKG completion. It comprises two main components: Granularity Representation Learning (GRL) and Adaptive Granularity Balancing (AGB). Specifically, GRL employs time-specific multi-layer convolutional neural networks to capture interactions between entities and relations at different granularities. After that, AGB generates adaptive weights for these embeddings according to temporal semantics, resulting in expressive representations of predictions. Moreover, to reflect similar semantics of adjacent timestamps, a temporal loss function is introduced. Extensive experimental results on four event benchmarks demonstrate the effectiveness of $\mathsf{LGRe}$ in learning time-related representations. To ensure reproducibility, our code is available at https://github.com/KcAcoZhang/LGRe.
Abstract:Spacecraft faces various situations when carrying out exploration missions in complex space, thus monitoring the anomaly status of spacecraft is crucial to the development of \textcolor{blue}{the} aerospace industry. The time series telemetry data generated by on-orbit spacecraft \textcolor{blue}{contains} important information about the status of spacecraft. However, traditional domain knowledge-based spacecraft anomaly detection methods are not effective due to high dimensionality and complex correlation among variables. In this work, we propose an anomaly detection framework for spacecraft multivariate time-series data based on temporal convolution networks (TCNs). First, we employ dynamic graph attention to model the complex correlation among variables and time series. Second, temporal convolution networks with parallel processing ability are used to extract multidimensional \textcolor{blue}{features} for \textcolor{blue}{the} downstream prediction task. Finally, many potential anomalies are detected by the best threshold. Experiments on real NASA SMAP/MSL spacecraft datasets show the superiority of our proposed model with respect to state-of-the-art methods.