Abstract:Recent advances in CV and NLP have inspired researchers to develop general-purpose graph foundation models through pre-training across diverse domains. However, a fundamental challenge arises from the substantial differences in graph topologies across domains. Additionally, real-world graphs are often sparse and prone to noisy connections and adversarial attacks. To address these issues, we propose the Multi-Domain Graph Foundation Model (MDGFM), a unified framework that aligns and leverages cross-domain topological information to facilitate robust knowledge transfer. MDGFM bridges different domains by adaptively balancing features and topology while refining original graphs to eliminate noise and align topological structures. To further enhance knowledge transfer, we introduce an efficient prompt-tuning approach. By aligning topologies, MDGFM not only improves multi-domain pre-training but also enables robust knowledge transfer to unseen domains. Theoretical analyses provide guarantees of MDGFM's effectiveness and domain generalization capabilities. Extensive experiments on both homophilic and heterophilic graph datasets validate the robustness and efficacy of our method.
Abstract:Event prediction tasks often handle spatio-temporal data distributed in a large spatial area. Different regions in the area exhibit different characteristics while having latent correlations. This spatial heterogeneity and correlations greatly affect the spatio-temporal distributions of event occurrences, which has not been addressed by state-of-the-art models. Learning spatial dependencies of events in a continuous space is challenging due to its fine granularity and a lack of prior knowledge. In this work, we propose a novel Graph Spatio-Temporal Point Process (GSTPP) model for fine-grained event prediction. It adopts an encoder-decoder architecture that jointly models the state dynamics of spatially localized regions using neural Ordinary Differential Equations (ODEs). The state evolution is built on the foundation of a novel Self-Adaptive Anchor Graph (SAAG) that captures spatial dependencies. By adaptively localizing the anchor nodes in the space and jointly constructing the correlation edges between them, the SAAG enhances the model's ability of learning complex spatial event patterns. The proposed GSTPP model greatly improves the accuracy of fine-grained event prediction. Extensive experimental results show that our method greatly improves the prediction accuracy over existing spatio-temporal event prediction approaches.
Abstract:Most existing graph clustering methods primarily focus on exploiting topological structure, often neglecting the ``missing-half" node feature information, especially how these features can enhance clustering performance. This issue is further compounded by the challenges associated with high-dimensional features. Feature selection in graph clustering is particularly difficult because it requires simultaneously discovering clusters and identifying the relevant features for these clusters. To address this gap, we introduce a novel paradigm called ``one node one model", which builds an exclusive model for each node and defines the node label as a combination of predictions for node groups. Specifically, the proposed ``Feature Personalized Graph Clustering (FPGC)" method identifies cluster-relevant features for each node using a squeeze-and-excitation block, integrating these features into each model to form the final representations. Additionally, the concept of feature cross is developed as a data augmentation technique to learn low-order feature interactions. Extensive experimental results demonstrate that FPGC outperforms state-of-the-art clustering methods. Moreover, the plug-and-play nature of our method provides a versatile solution to enhance GNN-based models from a feature perspective.
Abstract:Despite the recent success of two-stage prototypical networks in few-shot named entity recognition (NER), challenges such as over/under-detected false spans in the span detection stage and unaligned entity prototypes in the type classification stage persist. Additionally, LLMs have not proven to be effective few-shot information extractors in general. In this paper, we propose an approach called Boundary-Aware LLMs for Few-Shot Named Entity Recognition to address these issues. We introduce a boundary-aware contrastive learning strategy to enhance the LLM's ability to perceive entity boundaries for generalized entity spans. Additionally, we utilize LoRAHub to align information from the target domain to the source domain, thereby enhancing adaptive cross-domain classification capabilities. Extensive experiments across various benchmarks demonstrate that our framework outperforms prior methods, validating its effectiveness. In particular, the proposed strategies demonstrate effectiveness across a range of LLM architectures. The code and data are released on https://github.com/UESTC-GQJ/BANER.
Abstract:Few-shot document-level relation extraction suffers from poor performance due to the challenging cross-domain transferability of NOTA (none-of-the-above) relation representation. In this paper, we introduce a Transferable Proto-Learning Network (TPN) to address the challenging issue. It comprises three core components: Hybrid Encoder hierarchically encodes semantic content of input text combined with attention information to enhance the relation representations. As a plug-and-play module for Out-of-Domain (OOD) Detection, Transferable Proto-Learner computes NOTA prototype through an adaptive learnable block, effectively mitigating NOTA bias across various domains. Dynamic Weighting Calibrator detects relation-specific classification confidence, serving as dynamic weights to calibrate the NOTA-dominant loss function. Finally, to bolster the model's cross-domain performance, we complement it with virtual adversarial training (VAT). We conduct extensive experimental analyses on FREDo and ReFREDo, demonstrating the superiority of TPN. Compared to state-of-the-art methods, our approach achieves competitive performance with approximately half the parameter size. Data and code are available at https://github.com/EchoDreamer/TPN.
Abstract:Unsupervised Multiplex Graph Learning (UMGL) aims to learn node representations on various edge types without manual labeling. However, existing research overlooks a key factor: the reliability of the graph structure. Real-world data often exhibit a complex nature and contain abundant task-irrelevant noise, severely compromising UMGL's performance. Moreover, existing methods primarily rely on contrastive learning to maximize mutual information across different graphs, limiting them to multiplex graph redundant scenarios and failing to capture view-unique task-relevant information. In this paper, we focus on a more realistic and challenging task: to unsupervisedly learn a fused graph from multiple graphs that preserve sufficient task-relevant information while removing task-irrelevant noise. Specifically, our proposed Information-aware Unsupervised Multiplex Graph Fusion framework (InfoMGF) uses graph structure refinement to eliminate irrelevant noise and simultaneously maximizes view-shared and view-unique task-relevant information, thereby tackling the frontier of non-redundant multiplex graph. Theoretical analyses further guarantee the effectiveness of InfoMGF. Comprehensive experiments against various baselines on different downstream tasks demonstrate its superior performance and robustness. Surprisingly, our unsupervised method even beats the sophisticated supervised approaches. The source code and datasets are available at https://github.com/zxlearningdeep/InfoMGF.
Abstract:Unsupervised heterogeneous graph representation learning (UHGRL) has gained increasing attention due to its significance in handling practical graphs without labels. However, heterophily has been largely ignored, despite its ubiquitous presence in real-world heterogeneous graphs. In this paper, we define semantic heterophily and propose an innovative framework called Latent Graphs Guided Unsupervised Representation Learning (LatGRL) to handle this problem. First, we develop a similarity mining method that couples global structures and attributes, enabling the construction of fine-grained homophilic and heterophilic latent graphs to guide the representation learning. Moreover, we propose an adaptive dual-frequency semantic fusion mechanism to address the problem of node-level semantic heterophily. To cope with the massive scale of real-world data, we further design a scalable implementation. Extensive experiments on benchmark datasets validate the effectiveness and efficiency of our proposed framework. The source code and datasets have been made available at https://github.com/zxlearningdeep/LatGRL.
Abstract:Multi-relational graph clustering has demonstrated remarkable success in uncovering underlying patterns in complex networks. Representative methods manage to align different views motivated by advances in contrastive learning. Our empirical study finds the pervasive presence of imbalance in real-world graphs, which is in principle contradictory to the motivation of alignment. In this paper, we first propose a novel metric, the Aggregation Class Distance, to empirically quantify structural disparities among different graphs. To address the challenge of view imbalance, we propose Balanced Multi-Relational Graph Clustering (BMGC), comprising unsupervised dominant view mining and dual signals guided representation learning. It dynamically mines the dominant view throughout the training process, synergistically improving clustering performance with representation learning. Theoretical analysis ensures the effectiveness of dominant view mining. Extensive experiments and in-depth analysis on real-world and synthetic datasets showcase that BMGC achieves state-of-the-art performance, underscoring its superiority in addressing the view imbalance inherent in multi-relational graphs. The source code and datasets are available at https://github.com/zxlearningdeep/BMGC.
Abstract:Graph Neural Networks (GNNs) have garnered significant attention for their success in learning the representation of homophilic or heterophilic graphs. However, they cannot generalize well to real-world graphs with different levels of homophily. In response, the Possion-Charlier Network (PCNet) \cite{li2024pc}, the previous work, allows graph representation to be learned from heterophily to homophily. Although PCNet alleviates the heterophily issue, there remain some challenges in further improving the efficacy and efficiency. In this paper, we simplify PCNet and enhance its robustness. We first extend the filter order to continuous values and reduce its parameters. Two variants with adaptive neighborhood sizes are implemented. Theoretical analysis shows our model's robustness to graph structure perturbations or adversarial attacks. We validate our approach through semi-supervised learning tasks on various datasets representing both homophilic and heterophilic graphs.
Abstract:In today's data-driven digital era, the amount as well as complexity, such as multi-view, non-Euclidean, and multi-relational, of the collected data are growing exponentially or even faster. Clustering, which unsupervisely extracts valid knowledge from data, is extremely useful in practice. However, existing methods are independently developed to handle one particular challenge at the expense of the others. In this work, we propose a simple but effective framework for complex data clustering (CDC) that can efficiently process different types of data with linear complexity. We first utilize graph filtering to fuse geometry structure and attribute information. We then reduce the complexity with high-quality anchors that are adaptively learned via a novel similarity-preserving regularizer. We illustrate the cluster-ability of our proposed method theoretically and experimentally. In particular, we deploy CDC to graph data of size 111M.