Abstract:Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial General Intelligence (AGI) and serves as a foundation for various applications that bridge cyberspace and the physical world. Recently, the emergence of Multi-modal Large Models (MLMs) and World Models (WMs) have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities, making them a promising architecture for the brain of embodied agents. However, there is no comprehensive survey for Embodied AI in the era of MLMs. In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI. Our analysis firstly navigates through the forefront of representative works of embodied robots and simulators, to fully understand the research focuses and their limitations. Then, we analyze four main research targets: 1) embodied perception, 2) embodied interaction, 3) embodied agent, and 4) sim-to-real adaptation, covering the state-of-the-art methods, essential paradigms, and comprehensive datasets. Additionally, we explore the complexities of MLMs in virtual and real embodied agents, highlighting their significance in facilitating interactions in dynamic digital and physical environments. Finally, we summarize the challenges and limitations of embodied AI and discuss their potential future directions. We hope this survey will serve as a foundational reference for the research community and inspire continued innovation. The associated project can be found at https://github.com/HCPLab-SYSU/Embodied_AI_Paper_List.
Abstract:With the surge in the development of large language models, embodied intelligence has attracted increasing attention. Nevertheless, prior works on embodied intelligence typically encode scene or historical memory in an unimodal manner, either visual or linguistic, which complicates the alignment of the model's action planning with embodied control. To overcome this limitation, we introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions. Specifically, we propose a novel Multimodal Environment Memory (MEM) module, facilitating the integration of embodied control with large models through the visual-language memory of scenes. This capability enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities. We conduct experiments in a dynamic virtual cafe environment, utilizing multiple large models through zero-shot learning, and carefully design scenarios for various situations. The experimental results showcase the promising performance of our MEIA in various embodied interactive tasks.
Abstract:Despite advancements in LLMs, knowledge-based reasoning remains a longstanding issue due to the fragility of knowledge recall and inference. Existing methods primarily encourage LLMs to autonomously plan and solve problems or to extensively sample reasoning chains without addressing the conceptual and inferential fallacies. Attempting to alleviate inferential fallacies and drawing inspiration from multi-agent collaboration, we present a framework to increase faithfulness and causality for knowledge-based reasoning. Specifically, we propose to employ multiple intelligent agents (i.e., reasoners and an evaluator) to work collaboratively in a reasoning-and-consensus paradigm for elevated reasoning faithfulness. The reasoners focus on providing solutions with human-like causality to solve open-domain problems. On the other hand, the \textit{evaluator} agent scrutinizes if a solution is deducible from a non-causal perspective and if it still holds when challenged by a counterfactual candidate. According to the extensive and comprehensive evaluations on a variety of knowledge reasoning tasks (e.g., science question answering and commonsense reasoning), our framework outperforms all compared state-of-the-art approaches by large margins.
Abstract:We present CausalVLR (Causal Visual-Linguistic Reasoning), an open-source toolbox containing a rich set of state-of-the-art causal relation discovery and causal inference methods for various visual-linguistic reasoning tasks, such as VQA, image/video captioning, medical report generation, model generalization and robustness, etc. These methods have been included in the toolbox with PyTorch implementations under NVIDIA computing system. It not only includes training and inference codes, but also provides model weights. We believe this toolbox is by far the most complete visual-linguitic causal reasoning toolbox. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to re-implement existing methods and develop their own new causal reasoning methods. Code and models are available at https://github.com/HCPLab-SYSU/Causal-VLReasoning. The project is under active development by HCP-Lab's contributors and we will keep this document updated.
Abstract:Automatic radiology report generation is essential for computer-aided diagnosis and medication guidance. Importantly, automatic radiology report generation (RRG) can relieve the heavy burden of radiologists by generating medical reports automatically from visual-linguistic data relations. However, due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports that reliably describe abnormalities. Besides, the cross-modal confounder is usually unobservable and difficult to be eliminated explicitly. In this paper, we mitigate the cross-modal data bias for RRG from a new perspective, i.e., visual-linguistic causal intervention, and propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for RRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM), to implicitly deconfound the visual-linguistic confounder by causal front-door intervention. Specifically, the VDM explores and disentangles the visual confounder from the patch-based local and global features without object detection due to the absence of universal clinic semantic extraction. Simultaneously, the LDM eliminates the linguistic confounder caused by salient visual features and high-frequency context without constructing specific dictionaries. Extensive experiments on IU-Xray and MIMIC-CXR datasets show that our VLCI outperforms the state-of-the-art RRG methods significantly. Source code and models are available at https://github.com/WissingChen/VLCI.
Abstract:Based on digital whole slide scanning technique, artificial intelligence algorithms represented by deep learning have achieved remarkable results in the field of computational pathology. Compared with other medical images such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), pathological images are more difficult to annotate, thus there is an extreme lack of data sets that can be used for supervised learning. In this study, a self-supervised learning (SSL) model, Global Contrast Masked Autoencoders (GCMAE), is proposed, which has the ability to represent both global and local domain-specific features of whole slide image (WSI), as well as excellent cross-data transfer ability. The Camelyon16 and NCTCRC datasets are used to evaluate the performance of our model. When dealing with transfer learning tasks with different data sets, the experimental results show that GCMAE has better linear classification accuracy than MAE, which can reach 81.10% and 89.22% respectively. Our method outperforms the previous state-of-the-art algorithm and even surpass supervised learning (improved by 3.86% on NCTCRC data sets). The source code of this paper is publicly available at https://github.com/StarUniversus/gcmae
Abstract:The feature extraction methods of radiomics are mainly based on static tomographic images at a certain moment, while the occurrence and development of disease is a dynamic process that cannot be fully reflected by only static characteristics. This study proposes a new dynamic radiomics feature extraction workflow that uses time-dependent tomographic images of the same patient, focuses on the changes in image features over time, and then quantifies them as new dynamic features for diagnostic or prognostic evaluation. We first define the mathematical paradigm of dynamic radiomics and introduce three specific methods that can describe the transformation process of features over time. Three different clinical problems are used to validate the performance of the proposed dynamic feature with conventional 2D and 3D static features.