Abstract:Alpha mining, a critical component in quantitative investment, focuses on discovering predictive signals for future asset returns in increasingly complex financial markets. However, the pervasive issue of alpha decay, where factors lose their predictive power over time, poses a significant challenge for alpha mining. Traditional methods like genetic programming face rapid alpha decay from overfitting and complexity, while approaches driven by Large Language Models (LLMs), despite their promise, often rely too heavily on existing knowledge, creating homogeneous factors that worsen crowding and accelerate decay. To address this challenge, we propose AlphaAgent, an autonomous framework that effectively integrates LLM agents with ad hoc regularizations for mining decay-resistant alpha factors. AlphaAgent employs three key mechanisms: (i) originality enforcement through a similarity measure based on abstract syntax trees (ASTs) against existing alphas, (ii) hypothesis-factor alignment via LLM-evaluated semantic consistency between market hypotheses and generated factors, and (iii) complexity control via AST-based structural constraints, preventing over-engineered constructions that are prone to overfitting. These mechanisms collectively guide the alpha generation process to balance originality, financial rationale, and adaptability to evolving market conditions, mitigating the risk of alpha decay. Extensive evaluations show that AlphaAgent outperforms traditional and LLM-based methods in mitigating alpha decay across bull and bear markets, consistently delivering significant alpha in Chinese CSI 500 and US S&P 500 markets over the past four years. Notably, AlphaAgent showcases remarkable resistance to alpha decay, elevating the potential for yielding powerful factors.
Abstract:In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.