Abstract:Supporting the health and well-being of dynamic populations around the world requires governmental agencies, organizations and researchers to understand and reason over complex relationships between human behavior and local contexts in order to identify high-risk groups and strategically allocate limited resources. Traditional approaches to these classes of problems often entail developing manually curated, task-specific features and models to represent human behavior and the natural and built environment, which can be challenging to adapt to new, or even, related tasks. To address this, we introduce a Population Dynamics Foundation Model (PDFM) that aims to capture the relationships between diverse data modalities and is applicable to a broad range of geospatial tasks. We first construct a geo-indexed dataset for postal codes and counties across the United States, capturing rich aggregated information on human behavior from maps, busyness, and aggregated search trends, and environmental factors such as weather and air quality. We then model this data and the complex relationships between locations using a graph neural network, producing embeddings that can be adapted to a wide range of downstream tasks using relatively simple models. We evaluate the effectiveness of our approach by benchmarking it on 27 downstream tasks spanning three distinct domains: health indicators, socioeconomic factors, and environmental measurements. The approach achieves state-of-the-art performance on all 27 geospatial interpolation tasks, and on 25 out of the 27 extrapolation and super-resolution tasks. We combined the PDFM with a state-of-the-art forecasting foundation model, TimesFM, to predict unemployment and poverty, achieving performance that surpasses fully supervised forecasting. The full set of embeddings and sample code are publicly available for researchers.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Few-shot RAW Image Denoising track on MIPI 2024. In total, 165 participants were successfully registered, and 7 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art erformance on Few-shot RAW Image Denoising. More details of this challenge and the link to the dataset can be found at https://mipichallenge.org/MIPI2024.
Abstract:Recently, diffusion-based purification (DBP) has emerged as a promising approach for defending against adversarial attacks. However, previous studies have used questionable methods to evaluate the robustness of DBP models, their explanations of DBP robustness also lack experimental support. We re-examine DBP robustness using precise gradient, and discuss the impact of stochasticity on DBP robustness. To better explain DBP robustness, we assess DBP robustness under a novel attack setting, Deterministic White-box, and pinpoint stochasticity as the main factor in DBP robustness. Our results suggest that DBP models rely on stochasticity to evade the most effective attack direction, rather than directly countering adversarial perturbations. To improve the robustness of DBP models, we propose Adversarial Denoising Diffusion Training (ADDT). This technique uses Classifier-Guided Perturbation Optimization (CGPO) to generate adversarial perturbation through guidance from a pre-trained classifier, and uses Rank-Based Gaussian Mapping (RBGM) to convert adversarial pertubation into a normal Gaussian distribution. Empirical results show that ADDT improves the robustness of DBP models. Further experiments confirm that ADDT equips DBP models with the ability to directly counter adversarial perturbations.
Abstract:We investigate whether region-based representations are effective for recognition. Regions were once a mainstay in recognition approaches, but pixel and patch-based features are now used almost exclusively. We show that recent class-agnostic segmenters like SAM can be effectively combined with strong unsupervised representations like DINOv2 and used for a wide variety of tasks, including semantic segmentation, object-based image retrieval, and multi-image analysis. Once the masks and features are extracted, these representations, even with linear decoders, enable competitive performance, making them well suited to applications that require custom queries. The compactness of the representation also makes it well-suited to video analysis and other problems requiring inference across many images.
Abstract:Most existing graph visualization methods based on dimension reduction are limited to relatively small graphs due to performance issues. In this work, we propose a novel dimension reduction method for graph visualization, called t-Distributed Stochastic Graph Neighbor Embedding (t-SGNE). t-SGNE is specifically designed to visualize cluster structures in the graph. As a variant of the standard t-SNE method, t-SGNE avoids the time-consuming computations of pairwise similarity. Instead, it uses the neighbor structures of the graph to reduce the time complexity from quadratic to linear, thus supporting larger graphs. In addition, to suit t-SGNE, we combined Laplacian Eigenmaps with the shortest path algorithm in graphs to form the graph embedding algorithm ShortestPath Laplacian Eigenmaps Embedding (SPLEE). Performing SPLEE to obtain a high-dimensional embedding of the large-scale graph and then using t-SGNE to reduce its dimension for visualization, we are able to visualize graphs with up to 300K nodes and 1M edges within 5 minutes and achieve approximately 10% improvement in visualization quality. Codes and data are available at https://github.com/Charlie-XIAO/embedding-visualization-test.
Abstract:While prompt tuning approaches have achieved competitive performance with high efficiency, we observe that they invariably employ the same initialization process, wherein the soft prompt is either randomly initialized or derived from an existing embedding vocabulary. In contrast to these conventional methods, this study aims to investigate an alternative way to derive soft prompt. Our empirical studies show that the soft prompt typically exhibits a low intrinsic rank characteristic. With such observations, we propose decomposed prompt tuning, a novel approach that utilizes low-rank matrices to initialize the soft prompt. Through the low-rank reparameterization, our method significantly reduces the number of trainable parameters while maintaining effectiveness. Experimental results on the SuperGLUE benchmark in both high-resource and low-resource scenarios demonstrate the effectiveness of the proposed method.
Abstract:We propose DISC-LawLLM, an intelligent legal system utilizing large language models (LLMs) to provide a wide range of legal services. We adopt legal syllogism prompting strategies to construct supervised fine-tuning datasets in the Chinese Judicial domain and fine-tune LLMs with legal reasoning capability. We augment LLMs with a retrieval module to enhance models' ability to access and utilize external legal knowledge. A comprehensive legal benchmark, DISC-Law-Eval, is presented to evaluate intelligent legal systems from both objective and subjective dimensions. Quantitative and qualitative results on DISC-Law-Eval demonstrate the effectiveness of our system in serving various users across diverse legal scenarios. The detailed resources are available at https://github.com/FudanDISC/DISC-LawLLM.
Abstract:In e-commerce search, relevance between query and documents is an essential requirement for satisfying user experience. Different from traditional e-commerce platforms that offer products, users search on life service platforms such as Meituan mainly for product providers, which usually have abundant structured information, e.g. name, address, category, thousands of products. Modeling search relevance with these rich structured contents is challenging due to the following issues: (1) there is language distribution discrepancy among different fields of structured document, making it difficult to directly adopt off-the-shelf pretrained language model based methods like BERT. (2) different fields usually have different importance and their length vary greatly, making it difficult to extract document information helpful for relevance matching. To tackle these issues, in this paper we propose a novel two-stage pretraining and matching architecture for relevance matching with rich structured documents. At pretraining stage, we propose an effective pretraining method that employs both query and multiple fields of document as inputs, including an effective information compression method for lengthy fields. At relevance matching stage, a novel matching method is proposed by leveraging domain knowledge in search query to generate more effective document representations for relevance scoring. Extensive offline experiments and online A/B tests on millions of users verify that the proposed architectures effectively improve the performance of relevance modeling. The model has already been deployed online, serving the search traffic of Meituan for over a year.
Abstract:We introduce a method for flexible continual learning in open-vocabulary image classification, drawing inspiration from the complementary learning systems observed in human cognition. We propose a "tree probe" method, an adaption of lazy learning principles, which enables fast learning from new examples with competitive accuracy to batch-trained linear models. Further, we propose a method to combine predictions from a CLIP zero-shot model and the exemplar-based model, using the zero-shot estimated probability that a sample's class is within any of the exemplar classes. We test in data incremental, class incremental, and task incremental settings, as well as ability to perform flexible inference on varying subsets of zero-shot and learned categories. Our proposed method achieves a good balance of learning speed, target task effectiveness, and zero-shot effectiveness.
Abstract:Reconfigurable intelligent surfaces (RISs) have become one of the key technologies in 6G wireless communications. By configuring the reflection beamforming codebooks, RIS focuses signals on target receivers. In this paper, we investigate the codebook configuration for 1-bit RIS-aided systems. We propose a novel learning-based method built upon the advanced methodology of implicit neural representations. The proposed model learns a continuous and differentiable coordinate-to-codebook representation from samplings. Our method only requires the information of the user's coordinate and avoids the assumption of channel models. Moreover, we propose an encoding-decoding strategy to reduce the dimension of codebooks, and thus improve the learning efficiency of the proposed method. Experimental results on simulation and measured data demonstrated the remarkable advantages of the proposed method.