Abstract:Traditionally, AI development for two-player zero-sum games has relied on two primary techniques: decision trees and reinforcement learning (RL). A common approach involves using a fixed decision tree as one player's strategy while training an RL agent as the opponent to identify vulnerabilities in the decision tree, thereby improving its strategic strength iteratively. However, this process often requires significant human intervention to refine the decision tree after identifying its weaknesses, resulting in inefficiencies and hindering full automation of the strategy enhancement process. Fortunately, the advent of Large Language Models (LLMs) offers a transformative opportunity to automate the process. We propose RL-LLM-DT, an automatic decision tree generation method based on RL Evaluation and LLM Enhancement. Given an initial decision tree, the method involves two important iterative steps. Response Policy Search: RL is used to discover counter-strategies targeting the decision tree. Policy Improvement: LLMs analyze failure scenarios and generate improved decision tree code. In our method, RL focuses on finding the decision tree's flaws while LLM is prompted to generate an improved version of the decision tree. The iterative refinement process terminates when RL can't find any flaw of the tree or LLM fails to improve the tree. To evaluate the effectiveness of this integrated approach, we conducted experiments in a curling game. After iterative refinements, our curling AI based on the decision tree ranks first on the Jidi platform among 34 curling AIs in total, which demonstrates that LLMs can significantly enhance the robustness and adaptability of decision trees, representing a substantial advancement in the field of Game AI. Our code is available at https://github.com/Linjunjie99/RL-LLM-DT.
Abstract:Representing underwater 3D scenes is a valuable yet complex task, as attenuation and scattering effects during underwater imaging significantly couple the information of the objects and the water. This coupling presents a significant challenge for existing methods in effectively representing both the objects and the water medium simultaneously. To address this challenge, we propose Aquatic-GS, a hybrid 3D representation approach for underwater scenes that effectively represents both the objects and the water medium. Specifically, we construct a Neural Water Field (NWF) to implicitly model the water parameters, while extending the latest 3D Gaussian Splatting (3DGS) to model the objects explicitly. Both components are integrated through a physics-based underwater image formation model to represent complex underwater scenes. Moreover, to construct more precise scene geometry and details, we design a Depth-Guided Optimization (DGO) mechanism that uses a pseudo-depth map as auxiliary guidance. After optimization, Aquatic-GS enables the rendering of novel underwater viewpoints and supports restoring the true appearance of underwater scenes, as if the water medium were absent. Extensive experiments on both simulated and real-world datasets demonstrate that Aquatic-GS surpasses state-of-the-art underwater 3D representation methods, achieving better rendering quality and real-time rendering performance with a 410x increase in speed. Furthermore, regarding underwater image restoration, Aquatic-GS outperforms representative dewatering methods in color correction, detail recovery, and stability. Our models, code, and datasets can be accessed at https://aquaticgs.github.io.
Abstract:StarCraft Multi-Agent Challenge (SMAC) is one of the most commonly used experimental environments in multi-agent reinforcement learning (MARL), where the specific task is to control a set number of allied units to defeat enemy forces. Traditional MARL algorithms often require interacting with the environment for up to 1 million steps to train a model, and the resulting policies are typically non-interpretable with weak transferability. In this paper, we propose a novel approach to solving SMAC tasks called LLM-SMAC. In our framework, agents leverage large language models (LLMs) to generate decision tree code by providing task descriptions. The model is further self-reflection using feedback from the rewards provided by the environment. We conduct experiments in the SMAC and demonstrate that our method can produce high-quality, interpretable decision trees with minimal environmental exploration. Moreover, these models exhibit strong transferability, successfully applying to similar SMAC environments without modification. We believe this approach offers a new direction for solving decision-making tasks in the future.
Abstract:The reconstruction of physical fields from sparse measurements is pivotal in both scientific research and engineering applications. Traditional methods are increasingly supplemented by deep learning models due to their efficacy in extracting features from data. However, except for the low accuracy on complex physical systems, these models often fail to comply with essential physical constraints, such as governing equations and boundary conditions. To overcome this limitation, we introduce a novel data-driven field reconstruction framework, termed the Physics-aligned Schr\"{o}dinger Bridge (PalSB). This framework leverages a diffusion Schr\"{o}dinger bridge mechanism that is specifically tailored to align with physical constraints. The PalSB approach incorporates a dual-stage training process designed to address both local reconstruction mapping and global physical principles. Additionally, a boundary-aware sampling technique is implemented to ensure adherence to physical boundary conditions. We demonstrate the effectiveness of PalSB through its application to three complex nonlinear systems: cylinder flow from Particle Image Velocimetry experiments, two-dimensional turbulence, and a reaction-diffusion system. The results reveal that PalSB not only achieves higher accuracy but also exhibits enhanced compliance with physical constraints compared to existing methods. This highlights PalSB's capability to generate high-quality representations of intricate physical interactions, showcasing its potential for advancing field reconstruction techniques.
Abstract:Large Language Models (LLMs) have shown remarkable abilities across various tasks, yet their development has predominantly centered on high-resource languages like English and Chinese, leaving low-resource languages underserved. To address this disparity, we present SeaLLMs 3, the latest iteration of the SeaLLMs model family, tailored for Southeast Asian languages. This region, characterized by its rich linguistic diversity, has lacked adequate language technology support. SeaLLMs 3 aims to bridge this gap by covering a comprehensive range of languages spoken in this region, including English, Chinese, Indonesian, Vietnamese, Thai, Tagalog, Malay, Burmese, Khmer, Lao, Tamil, and Javanese. Leveraging efficient language enhancement techniques and a specially constructed instruction tuning dataset, SeaLLMs 3 significantly reduces training costs while maintaining high performance and versatility. Our model excels in tasks such as world knowledge, mathematical reasoning, translation, and instruction following, achieving state-of-the-art performance among similarly sized models. Additionally, we prioritized safety and reliability by addressing both general and culture-specific considerations and incorporated mechanisms to reduce hallucinations. This work underscores the importance of inclusive AI, showing that advanced LLM capabilities can benefit underserved linguistic and cultural communities.
Abstract:Dense retrievers and retrieval-augmented language models have been widely used in various NLP applications. Despite being designed to deliver reliable and secure outcomes, the vulnerability of retrievers to potential attacks remains unclear, raising concerns about their security. In this paper, we introduce a novel scenario where the attackers aim to covertly disseminate targeted misinformation, such as hate speech or advertisement, through a retrieval system. To achieve this, we propose a perilous backdoor attack triggered by grammar errors in dense passage retrieval. Our approach ensures that attacked models can function normally for standard queries but are manipulated to return passages specified by the attacker when users unintentionally make grammatical mistakes in their queries. Extensive experiments demonstrate the effectiveness and stealthiness of our proposed attack method. When a user query is error-free, our model consistently retrieves accurate information while effectively filtering out misinformation from the top-k results. However, when a query contains grammar errors, our system shows a significantly higher success rate in fetching the targeted content.
Abstract:Modeling human pose is a cornerstone in applications from human-robot interaction to augmented reality, yet crafting a robust human pose prior remains a challenge due to biomechanical constraints and diverse human movements. Traditional priors like VAEs and NDFs often fall short in realism and generalization, especially in extreme conditions such as unseen noisy poses. To address these issues, we introduce DPoser, a robust and versatile human pose prior built upon diffusion models. Designed with optimization frameworks, DPoser seamlessly integrates into various pose-centric applications, including human mesh recovery, pose completion, and motion denoising. Specifically, by formulating these tasks as inverse problems, we employ variational diffusion sampling for efficient solving. Furthermore, acknowledging the disparity between the articulated poses we focus on and structured images in previous research, we propose a truncated timestep scheduling to boost performance on downstream tasks. Our exhaustive experiments demonstrate DPoser's superiority over existing state-of-the-art pose priors across multiple tasks.
Abstract:Despite the remarkable achievements of large language models (LLMs) in various tasks, there remains a linguistic bias that favors high-resource languages, such as English, often at the expense of low-resource and regional languages. To address this imbalance, we introduce SeaLLMs, an innovative series of language models that specifically focuses on Southeast Asian (SEA) languages. SeaLLMs are built upon the Llama-2 model and further advanced through continued pre-training with an extended vocabulary, specialized instruction and alignment tuning to better capture the intricacies of regional languages. This allows them to respect and reflect local cultural norms, customs, stylistic preferences, and legal considerations. Our comprehensive evaluation demonstrates that SeaLLM-13b models exhibit superior performance across a wide spectrum of linguistic tasks and assistant-style instruction-following capabilities relative to comparable open-source models. Moreover, they outperform ChatGPT-3.5 in non-Latin languages, such as Thai, Khmer, Lao, and Burmese, by large margins while remaining lightweight and cost-effective to operate.
Abstract:Sentiment analysis is a well-established natural language processing task, with sentiment polarity classification being one of its most popular and representative tasks. However, despite the success of pre-trained language models in this area, they often fall short of capturing the broader complexities of sentiment analysis. To address this issue, we propose a new task called Sentiment and Opinion Understanding of Language (SOUL). SOUL aims to evaluate sentiment understanding through two subtasks: Review Comprehension (RC) and Justification Generation (JG). RC seeks to validate statements that focus on subjective information based on a review text, while JG requires models to provide explanations for their sentiment predictions. To enable comprehensive evaluation, we annotate a new dataset comprising 15,028 statements from 3,638 reviews. Experimental results indicate that SOUL is a challenging task for both small and large language models, with a performance gap of up to 27% when compared to human performance. Furthermore, evaluations conducted with both human experts and GPT-4 highlight the limitations of the small language model in generating reasoning-based justifications. These findings underscore the challenging nature of the SOUL task for existing models, emphasizing the need for further advancements in sentiment analysis to address its complexities. The new dataset and code are available at https://github.com/DAMO-NLP-SG/SOUL.
Abstract:While large language models (LLMs) exhibit remarkable capabilities across a wide range of tasks, they pose potential safety concerns, such as the ``jailbreak'' problem, wherein malicious instructions can manipulate LLMs to exhibit undesirable behavior. Although several preventive measures have been developed to mitigate the potential risks associated with LLMs, they have primarily focused on English data. In this study, we reveal the presence of multilingual jailbreak challenges within LLMs and consider two potential risk scenarios: unintentional and intentional. The unintentional scenario involves users querying LLMs using non-English prompts and inadvertently bypassing the safety mechanisms, while the intentional scenario concerns malicious users combining malicious instructions with multilingual prompts to deliberately attack LLMs. The experimental results reveal that in the unintentional scenario, the rate of unsafe content increases as the availability of languages decreases. Specifically, low-resource languages exhibit three times the likelihood of encountering harmful content compared to high-resource languages, with both ChatGPT and GPT-4. In the intentional scenario, multilingual prompts can exacerbate the negative impact of malicious instructions, with astonishingly high rates of unsafe output: 80.92\% for ChatGPT and 40.71\% for GPT-4. To handle such a challenge in the multilingual context, we propose a novel \textsc{Self-Defense} framework that automatically generates multilingual training data for safety fine-tuning. Experimental results show that ChatGPT fine-tuned with such data can achieve a substantial reduction in unsafe content generation. Data is available at https://github.com/DAMO-NLP-SG/multilingual-safety-for-LLMs. Warning: This paper contains examples with potentially harmful content.