for the Alzheimer's Disease Neuroimaging Initiative
Abstract:Since its introduction, the transformer has shifted the development trajectory away from traditional models (e.g., RNN, MLP) in time series forecasting, which is attributed to its ability to capture global dependencies within temporal tokens. Follow-up studies have largely involved altering the tokenization and self-attention modules to better adapt Transformers for addressing special challenges like non-stationarity, channel-wise dependency, and variable correlation in time series. However, we found that the expressive capability of sequence representation is a key factor influencing Transformer performance in time forecasting after investigating several representative methods, where there is an almost linear relationship between sequence representation entropy and mean square error, with more diverse representations performing better. In this paper, we propose a novel attention mechanism with Sequence Complementors and prove feasible from an information theory perspective, where these learnable sequences are able to provide complementary information beyond current input to feed attention. We further enhance the Sequence Complementors via a diversification loss that is theoretically covered. The empirical evaluation of both long-term and short-term forecasting has confirmed its superiority over the recent state-of-the-art methods.
Abstract:Multiple signal modalities, such as vision and sounds, are naturally present in real-world phenomena. Recently, there has been growing interest in learning generative models, in particular variational autoencoder (VAE), to for multimodal representation learning especially in the case of missing modalities. The primary goal of these models is to learn a modality-invariant and modality-specific representation that characterizes information across multiple modalities. Previous attempts at multimodal VAEs approach this mainly through the lens of experts, aggregating unimodal inference distributions with a product of experts (PoE), a mixture of experts (MoE), or a combination of both. In this paper, we provide an alternative generic and theoretical formulation of multimodal VAE through the lens of barycenter. We first show that PoE and MoE are specific instances of barycenters, derived by minimizing the asymmetric weighted KL divergence to unimodal inference distributions. Our novel formulation extends these two barycenters to a more flexible choice by considering different types of divergences. In particular, we explore the Wasserstein barycenter defined by the 2-Wasserstein distance, which better preserves the geometry of unimodal distributions by capturing both modality-specific and modality-invariant representations compared to KL divergence. Empirical studies on three multimodal benchmarks demonstrated the effectiveness of the proposed method.
Abstract:The availability of challenging simulation environments is pivotal for advancing the field of Multi-Agent Reinforcement Learning (MARL). In cooperative MARL settings, the StarCraft Multi-Agent Challenge (SMAC) has gained prominence as a benchmark for algorithms following centralized training with decentralized execution paradigm. However, with continual advancements in SMAC, many algorithms now exhibit near-optimal performance, complicating the evaluation of their true effectiveness. To alleviate this problem, in this work, we highlight a critical issue: the default opponent policy in these environments lacks sufficient diversity, leading MARL algorithms to overfit and exploit unintended vulnerabilities rather than learning robust strategies. To overcome these limitations, we propose SMAC-HARD, a novel benchmark designed to enhance training robustness and evaluation comprehensiveness. SMAC-HARD supports customizable opponent strategies, randomization of adversarial policies, and interfaces for MARL self-play, enabling agents to generalize to varying opponent behaviors and improve model stability. Furthermore, we introduce a black-box testing framework wherein agents are trained without exposure to the edited opponent scripts but are tested against these scripts to evaluate the policy coverage and adaptability of MARL algorithms. We conduct extensive evaluations of widely used and state-of-the-art algorithms on SMAC-HARD, revealing the substantial challenges posed by edited and mixed strategy opponents. Additionally, the black-box strategy tests illustrate the difficulty of transferring learned policies to unseen adversaries. We envision SMAC-HARD as a critical step toward benchmarking the next generation of MARL algorithms, fostering progress in self-play methods for multi-agent systems. Our code is available at https://github.com/devindeng94/smac-hard.
Abstract:Foundation model (FM) powered agent services are regarded as a promising solution to develop intelligent and personalized applications for advancing toward Artificial General Intelligence (AGI). To achieve high reliability and scalability in deploying these agent services, it is essential to collaboratively optimize computational and communication resources, thereby ensuring effective resource allocation and seamless service delivery. In pursuit of this vision, this paper proposes a unified framework aimed at providing a comprehensive survey on deploying FM-based agent services across heterogeneous devices, with the emphasis on the integration of model and resource optimization to establish a robust infrastructure for these services. Particularly, this paper begins with exploring various low-level optimization strategies during inference and studies approaches that enhance system scalability, such as parallelism techniques and resource scaling methods. The paper then discusses several prominent FMs and investigates research efforts focused on inference acceleration, including techniques such as model compression and token reduction. Moreover, the paper also investigates critical components for constructing agent services and highlights notable intelligent applications. Finally, the paper presents potential research directions for developing real-time agent services with high Quality of Service (QoS).
Abstract:In this work, we propose Many-MobileNet, an efficient model fusion strategy for retinal disease classification using lightweight CNN architecture. Our method addresses key challenges such as overfitting and limited dataset variability by training multiple models with distinct data augmentation strategies and different model complexities. Through this fusion technique, we achieved robust generalization in data-scarce domains while balancing computational efficiency with feature extraction capabilities.
Abstract:Retinal fundus photography enhancement is important for diagnosing and monitoring retinal diseases. However, early approaches to retinal image enhancement, such as those based on Generative Adversarial Networks (GANs), often struggle to preserve the complex topological information of blood vessels, resulting in spurious or missing vessel structures. The persistence diagram, which captures topological features based on the persistence of topological structures under different filtrations, provides a promising way to represent the structure information. In this work, we propose a topology-preserving training paradigm that regularizes blood vessel structures by minimizing the differences of persistence diagrams. We call the resulting framework Topology Preserving Optimal Transport (TPOT). Experimental results on a large-scale dataset demonstrate the superiority of the proposed method compared to several state-of-the-art supervised and unsupervised techniques, both in terms of image quality and performance in the downstream blood vessel segmentation task. The code is available at https://github.com/Retinal-Research/TPOT.
Abstract:With the rapid development of deep learning, CNN-based U-shaped networks have succeeded in medical image segmentation and are widely applied for various tasks. However, their limitations in capturing global features hinder their performance in complex segmentation tasks. The rise of Vision Transformer (ViT) has effectively compensated for this deficiency of CNNs and promoted the application of ViT-based U-networks in medical image segmentation. However, the high computational demands of ViT make it unsuitable for many medical devices and mobile platforms with limited resources, restricting its deployment on resource-constrained and edge devices. To address this, we propose EViT-UNet, an efficient ViT-based segmentation network that reduces computational complexity while maintaining accuracy, making it ideal for resource-constrained medical devices. EViT-UNet is built on a U-shaped architecture, comprising an encoder, decoder, bottleneck layer, and skip connections, combining convolutional operations with self-attention mechanisms to optimize efficiency. Experimental results demonstrate that EViT-UNet achieves high accuracy in medical image segmentation while significantly reducing computational complexity.
Abstract:In recent years, significant progress has been made in the medical image analysis domain using convolutional neural networks (CNNs). In particular, deep neural networks based on a U-shaped architecture (UNet) with skip connections have been adopted for several medical imaging tasks, including organ segmentation. Despite their great success, CNNs are not good at learning global or semantic features. Especially ones that require human-like reasoning to understand the context. Many UNet architectures attempted to adjust with the introduction of Transformer-based self-attention mechanisms, and notable gains in performance have been noted. However, the transformers are inherently flawed with redundancy to learn at shallow layers, which often leads to an increase in the computation of attention from the nearby pixels offering limited information. The recently introduced Super Token Attention (STA) mechanism adapts the concept of superpixels from pixel space to token space, using super tokens as compact visual representations. This approach tackles the redundancy by learning efficient global representations in vision transformers, especially for the shallow layers. In this work, we introduce the STA module in the UNet architecture (STA-UNet), to limit redundancy without losing rich information. Experimental results on four publicly available datasets demonstrate the superiority of STA-UNet over existing state-of-the-art architectures in terms of Dice score and IOU for organ segmentation tasks. The code is available at \url{https://github.com/Retinal-Research/STA-UNet}.
Abstract:Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schr\"odinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine structural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schr\"{o}dinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE .
Abstract:Retinal fundus photography offers a non-invasive way to diagnose and monitor a variety of retinal diseases, but is prone to inherent quality glitches arising from systemic imperfections or operator/patient-related factors. However, high-quality retinal images are crucial for carrying out accurate diagnoses and automated analyses. The fundus image enhancement is typically formulated as a distribution alignment problem, by finding a one-to-one mapping between a low-quality image and its high-quality counterpart. This paper proposes a context-informed optimal transport (OT) learning framework for tackling unpaired fundus image enhancement. In contrast to standard generative image enhancement methods, which struggle with handling contextual information (e.g., over-tampered local structures and unwanted artifacts), the proposed context-aware OT learning paradigm better preserves local structures and minimizes unwanted artifacts. Leveraging deep contextual features, we derive the proposed context-aware OT using the earth mover's distance and show that the proposed context-OT has a solid theoretical guarantee. Experimental results on a large-scale dataset demonstrate the superiority of the proposed method over several state-of-the-art supervised and unsupervised methods in terms of signal-to-noise ratio, structural similarity index, as well as two downstream tasks. The code is available at \url{https://github.com/Retinal-Research/Contextual-OT}.