Abstract:In recent years, significant progress has been made in the medical image analysis domain using convolutional neural networks (CNNs). In particular, deep neural networks based on a U-shaped architecture (UNet) with skip connections have been adopted for several medical imaging tasks, including organ segmentation. Despite their great success, CNNs are not good at learning global or semantic features. Especially ones that require human-like reasoning to understand the context. Many UNet architectures attempted to adjust with the introduction of Transformer-based self-attention mechanisms, and notable gains in performance have been noted. However, the transformers are inherently flawed with redundancy to learn at shallow layers, which often leads to an increase in the computation of attention from the nearby pixels offering limited information. The recently introduced Super Token Attention (STA) mechanism adapts the concept of superpixels from pixel space to token space, using super tokens as compact visual representations. This approach tackles the redundancy by learning efficient global representations in vision transformers, especially for the shallow layers. In this work, we introduce the STA module in the UNet architecture (STA-UNet), to limit redundancy without losing rich information. Experimental results on four publicly available datasets demonstrate the superiority of STA-UNet over existing state-of-the-art architectures in terms of Dice score and IOU for organ segmentation tasks. The code is available at \url{https://github.com/Retinal-Research/STA-UNet}.
Abstract:Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schr\"odinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine structural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schr\"{o}dinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE .
Abstract:Retinal fundus photography offers a non-invasive way to diagnose and monitor a variety of retinal diseases, but is prone to inherent quality glitches arising from systemic imperfections or operator/patient-related factors. However, high-quality retinal images are crucial for carrying out accurate diagnoses and automated analyses. The fundus image enhancement is typically formulated as a distribution alignment problem, by finding a one-to-one mapping between a low-quality image and its high-quality counterpart. This paper proposes a context-informed optimal transport (OT) learning framework for tackling unpaired fundus image enhancement. In contrast to standard generative image enhancement methods, which struggle with handling contextual information (e.g., over-tampered local structures and unwanted artifacts), the proposed context-aware OT learning paradigm better preserves local structures and minimizes unwanted artifacts. Leveraging deep contextual features, we derive the proposed context-aware OT using the earth mover's distance and show that the proposed context-OT has a solid theoretical guarantee. Experimental results on a large-scale dataset demonstrate the superiority of the proposed method over several state-of-the-art supervised and unsupervised methods in terms of signal-to-noise ratio, structural similarity index, as well as two downstream tasks. The code is available at \url{https://github.com/Retinal-Research/Contextual-OT}.