Abstract:Since its introduction, the transformer has shifted the development trajectory away from traditional models (e.g., RNN, MLP) in time series forecasting, which is attributed to its ability to capture global dependencies within temporal tokens. Follow-up studies have largely involved altering the tokenization and self-attention modules to better adapt Transformers for addressing special challenges like non-stationarity, channel-wise dependency, and variable correlation in time series. However, we found that the expressive capability of sequence representation is a key factor influencing Transformer performance in time forecasting after investigating several representative methods, where there is an almost linear relationship between sequence representation entropy and mean square error, with more diverse representations performing better. In this paper, we propose a novel attention mechanism with Sequence Complementors and prove feasible from an information theory perspective, where these learnable sequences are able to provide complementary information beyond current input to feed attention. We further enhance the Sequence Complementors via a diversification loss that is theoretically covered. The empirical evaluation of both long-term and short-term forecasting has confirmed its superiority over the recent state-of-the-art methods.
Abstract:Multiple signal modalities, such as vision and sounds, are naturally present in real-world phenomena. Recently, there has been growing interest in learning generative models, in particular variational autoencoder (VAE), to for multimodal representation learning especially in the case of missing modalities. The primary goal of these models is to learn a modality-invariant and modality-specific representation that characterizes information across multiple modalities. Previous attempts at multimodal VAEs approach this mainly through the lens of experts, aggregating unimodal inference distributions with a product of experts (PoE), a mixture of experts (MoE), or a combination of both. In this paper, we provide an alternative generic and theoretical formulation of multimodal VAE through the lens of barycenter. We first show that PoE and MoE are specific instances of barycenters, derived by minimizing the asymmetric weighted KL divergence to unimodal inference distributions. Our novel formulation extends these two barycenters to a more flexible choice by considering different types of divergences. In particular, we explore the Wasserstein barycenter defined by the 2-Wasserstein distance, which better preserves the geometry of unimodal distributions by capturing both modality-specific and modality-invariant representations compared to KL divergence. Empirical studies on three multimodal benchmarks demonstrated the effectiveness of the proposed method.
Abstract:Deep learning has made significant strides in automated brain tumor segmentation from magnetic resonance imaging (MRI) scans in recent years. However, the reliability of these tools is hampered by the presence of poor-quality segmentation outliers, particularly in out-of-distribution samples, making their implementation in clinical practice difficult. Therefore, there is a need for quality control (QC) to screen the quality of the segmentation results. Although numerous automatic QC methods have been developed for segmentation quality screening, most were designed for cardiac MRI segmentation, which involves a single modality and a single tissue type. Furthermore, most prior works only provided subject-level predictions of segmentation quality and did not identify erroneous parts segmentation that may require refinement. To address these limitations, we proposed a novel multi-task deep learning architecture, termed QCResUNet, which produces subject-level segmentation-quality measures as well as voxel-level segmentation error maps for each available tissue class. To validate the effectiveness of the proposed method, we conducted experiments on assessing its performance on evaluating the quality of two distinct segmentation tasks. First, we aimed to assess the quality of brain tumor segmentation results. For this task, we performed experiments on one internal and two external datasets. Second, we aimed to evaluate the segmentation quality of cardiac Magnetic Resonance Imaging (MRI) data from the Automated Cardiac Diagnosis Challenge. The proposed method achieved high performance in predicting subject-level segmentation-quality metrics and accurately identifying segmentation errors on a voxel basis. This has the potential to be used to guide human-in-the-loop feedback to improve segmentations in clinical settings.
Abstract:In this work, we propose Many-MobileNet, an efficient model fusion strategy for retinal disease classification using lightweight CNN architecture. Our method addresses key challenges such as overfitting and limited dataset variability by training multiple models with distinct data augmentation strategies and different model complexities. Through this fusion technique, we achieved robust generalization in data-scarce domains while balancing computational efficiency with feature extraction capabilities.
Abstract:In recent years, significant progress has been made in the medical image analysis domain using convolutional neural networks (CNNs). In particular, deep neural networks based on a U-shaped architecture (UNet) with skip connections have been adopted for several medical imaging tasks, including organ segmentation. Despite their great success, CNNs are not good at learning global or semantic features. Especially ones that require human-like reasoning to understand the context. Many UNet architectures attempted to adjust with the introduction of Transformer-based self-attention mechanisms, and notable gains in performance have been noted. However, the transformers are inherently flawed with redundancy to learn at shallow layers, which often leads to an increase in the computation of attention from the nearby pixels offering limited information. The recently introduced Super Token Attention (STA) mechanism adapts the concept of superpixels from pixel space to token space, using super tokens as compact visual representations. This approach tackles the redundancy by learning efficient global representations in vision transformers, especially for the shallow layers. In this work, we introduce the STA module in the UNet architecture (STA-UNet), to limit redundancy without losing rich information. Experimental results on four publicly available datasets demonstrate the superiority of STA-UNet over existing state-of-the-art architectures in terms of Dice score and IOU for organ segmentation tasks. The code is available at \url{https://github.com/Retinal-Research/STA-UNet}.
Abstract:Retinal fundus photography is significant in diagnosing and monitoring retinal diseases. However, systemic imperfections and operator/patient-related factors can hinder the acquisition of high-quality retinal images. Previous efforts in retinal image enhancement primarily relied on GANs, which are limited by the trade-off between training stability and output diversity. In contrast, the Schr\"odinger Bridge (SB), offers a more stable solution by utilizing Optimal Transport (OT) theory to model a stochastic differential equation (SDE) between two arbitrary distributions. This allows SB to effectively transform low-quality retinal images into their high-quality counterparts. In this work, we leverage the SB framework to propose an image-to-image translation pipeline for retinal image enhancement. Additionally, previous methods often fail to capture fine structural details, such as blood vessels. To address this, we enhance our pipeline by introducing Dynamic Snake Convolution, whose tortuous receptive field can better preserve tubular structures. We name the resulting retinal fundus image enhancement framework the Context-aware Unpaired Neural Schr\"{o}dinger Bridge (CUNSB-RFIE). To the best of our knowledge, this is the first endeavor to use the SB approach for retinal image enhancement. Experimental results on a large-scale dataset demonstrate the advantage of the proposed method compared to several state-of-the-art supervised and unsupervised methods in terms of image quality and performance on downstream tasks.The code is available at https://github.com/Retinal-Research/CUNSB-RFIE .
Abstract:Convolutional neural networks are widely used in various segmentation tasks in medical images. However, they are challenged to learn global features adaptively due to the inherent locality of convolutional operations. In contrast, MLP Mixers are proposed as a backbone to learn global information across channels with low complexity. However, they cannot capture spatial features efficiently. Additionally, they lack effective mechanisms to fuse and mix features adaptively. To tackle these limitations, we propose a novel Dynamic Decomposed Mixer module. It is designed to employ novel Mixers to extract features and aggregate information across different spatial locations and channels. Additionally, it employs novel dynamic mixing mechanisms to model inter-dependencies between channel and spatial feature representations and to fuse them adaptively. Subsequently, we incorporate it into a U-shaped Transformer-based architecture to generate a novel network, termed the Dynamic Decomposed MLP Mixer. We evaluated it for medical image segmentation on two datasets, and it achieved superior segmentation performance than other state-of-the-art methods.
Abstract:Retinal fundus photography offers a non-invasive way to diagnose and monitor a variety of retinal diseases, but is prone to inherent quality glitches arising from systemic imperfections or operator/patient-related factors. However, high-quality retinal images are crucial for carrying out accurate diagnoses and automated analyses. The fundus image enhancement is typically formulated as a distribution alignment problem, by finding a one-to-one mapping between a low-quality image and its high-quality counterpart. This paper proposes a context-informed optimal transport (OT) learning framework for tackling unpaired fundus image enhancement. In contrast to standard generative image enhancement methods, which struggle with handling contextual information (e.g., over-tampered local structures and unwanted artifacts), the proposed context-aware OT learning paradigm better preserves local structures and minimizes unwanted artifacts. Leveraging deep contextual features, we derive the proposed context-aware OT using the earth mover's distance and show that the proposed context-OT has a solid theoretical guarantee. Experimental results on a large-scale dataset demonstrate the superiority of the proposed method over several state-of-the-art supervised and unsupervised methods in terms of signal-to-noise ratio, structural similarity index, as well as two downstream tasks. The code is available at \url{https://github.com/Retinal-Research/Contextual-OT}.
Abstract:Survival analysis models time-to-event distributions with censorship. Recently, deep survival models using neural networks have dominated due to their representational power and state-of-the-art performance. However, their "black-box" nature hinders interpretability, which is crucial in real-world applications. In contrast, "white-box" tree-based survival models offer better interpretability but struggle to converge to global optima due to greedy expansion. In this paper, we bridge the gap between previous deep survival models and traditional tree-based survival models through deep rectified linear unit (ReLU) networks. We show that a deliberately constructed deep ReLU network (SurvReLU) can harness the interpretability of tree-based structures with the representational power of deep survival models. Empirical studies on both simulated and real survival benchmark datasets show the effectiveness of the proposed SurvReLU in terms of performance and interoperability. The code is available at \href{https://github.com/xs018/SurvReLU}{\color{magenta}{ https://github.com/xs018/SurvReLU}}.
Abstract:Detecting retinal image analysis, particularly the geometrical features of branching points, plays an essential role in diagnosing eye diseases. However, existing methods used for this purpose often are coarse-level and lack fine-grained analysis for efficient annotation. To mitigate these issues, this paper proposes a novel method for detecting retinal branching angles using a self-configured image processing technique. Additionally, we offer an open-source annotation tool and a benchmark dataset comprising 40 images annotated with retinal branching angles. Our methodology for retinal branching angle detection and calculation is detailed, followed by a benchmark analysis comparing our method with previous approaches. The results indicate that our method is robust under various conditions with high accuracy and efficiency, which offers a valuable instrument for ophthalmic research and clinical applications.