Abstract:Despite recent progress in reducing road fatalities, the persistently high rate of traffic-related deaths highlights the necessity for improved safety interventions. Leveraging large-scale graph-based nationwide road network data across 49 states in the USA, our study first posits the Concurrency Hypothesis from intuitive observations, suggesting a significant likelihood of incidents occurring at neighboring nodes within the road network. To quantify this phenomenon, we introduce two novel metrics, Average Neighbor Crash Density (ANCD) and Average Neighbor Crash Continuity (ANCC), and subsequently employ them in statistical tests to validate the hypothesis rigorously. Building upon this foundation, we propose the Concurrency Prior (CP) method, a powerful approach designed to enhance the predictive capabilities of general Graph Neural Network (GNN) models in semi-supervised traffic incident prediction tasks. Our method allows GNNs to incorporate concurrent incident information, as mentioned in the hypothesis, via tokenization with negligible extra parameters. The extensive experiments, utilizing real-world data across states and cities in the USA, demonstrate that integrating CP into 12 state-of-the-art GNN architectures leads to significant improvements, with gains ranging from 3% to 13% in F1 score and 1.3% to 9% in AUC metrics. The code is publicly available at https://github.com/xiwenc1/Incident-GNN-CP.
Abstract:The increasing complexity of deep learning models used for calculating user representations presents significant challenges, particularly with limited computational resources and strict service-level agreements (SLAs). Previous research efforts have focused on optimizing model inference but have overlooked a critical question: is it necessary to perform user model inference for every ad request in large-scale social networks? To address this question and these challenges, we first analyze user access patterns at Meta and find that most user model inferences occur within a short timeframe. T his observation reveals a triangular relationship among model complexity, embedding freshness, and service SLAs. Building on this insight, we designed, implemented, and evaluated ERCache, an efficient and robust caching framework for large-scale user representations in ads recommendation systems on social networks. ERCache categorizes cache into direct and failover types and applies customized settings and eviction policies for each model, effectively balancing model complexity, embedding freshness, and service SLAs, even considering the staleness introduced by caching. ERCache has been deployed at Meta for over six months, supporting more than 30 ranking models while efficiently conserving computational resources and complying with service SLA requirements.
Abstract:Recent years, multi-hop reasoning has been widely studied for knowledge graph (KG) reasoning due to its efficacy and interpretability. However, previous multi-hop reasoning approaches are subject to two primary shortcomings. First, agents struggle to learn effective and robust policies at the early phase due to sparse rewards. Second, these approaches often falter on specific datasets like sparse knowledge graphs, where agents are required to traverse lengthy reasoning paths. To address these problems, we propose a multi-hop reasoning model with dual agents based on hierarchical reinforcement learning (HRL), which is named FULORA. FULORA tackles the above reasoning challenges by eFficient GUidance-ExpLORAtion between dual agents. The high-level agent walks on the simplified knowledge graph to provide stage-wise hints for the low-level agent walking on the original knowledge graph. In this framework, the low-level agent optimizes a value function that balances two objectives: (1) maximizing return, and (2) integrating efficient guidance from the high-level agent. Experiments conducted on three real-word knowledge graph datasets demonstrate that FULORA outperforms RL-based baselines, especially in the case of long-distance reasoning.
Abstract:Deep neural networks, including transformers and convolutional neural networks, have significantly improved multivariate time series classification (MTSC). However, these methods often rely on supervised learning, which does not fully account for the sparsity and locality of patterns in time series data (e.g., diseases-related anomalous points in ECG). To address this challenge, we formally reformulate MTSC as a weakly supervised problem, introducing a novel multiple-instance learning (MIL) framework for better localization of patterns of interest and modeling time dependencies within time series. Our novel approach, TimeMIL, formulates the temporal correlation and ordering within a time-aware MIL pooling, leveraging a tokenized transformer with a specialized learnable wavelet positional token. The proposed method surpassed 26 recent state-of-the-art methods, underscoring the effectiveness of the weakly supervised TimeMIL in MTSC.
Abstract:The rise of machine learning in recent years has brought benefits to various research fields such as wide fire detection. Nevertheless, small object detection and rare object detection remain a challenge. To address this problem, we present a dataset automata that can generate ground truth paired datasets using diffusion models. Specifically, we introduce a mask-guided diffusion framework that can fusion the wildfire into the existing images while the flame position and size can be precisely controlled. In advance, to fill the gap that the dataset of wildfire images in specific scenarios is missing, we vary the background of synthesized images by controlling both the text prompt and input image. Furthermore, to solve the color tint problem or the well-known domain shift issue, we apply the CLIP model to filter the generated massive dataset to preserve quality. Thus, our proposed framework can generate a massive dataset of that images are high-quality and ground truth-paired, which well addresses the needs of the annotated datasets in specific tasks.
Abstract:Ensuring logical consistency in predictions is a crucial yet overlooked aspect in multi-attribute classification. We explore the potential reasons for this oversight and introduce two pressing challenges to the field: 1) How can we ensure that a model, when trained with data checked for logical consistency, yields predictions that are logically consistent? 2) How can we achieve the same with data that hasn't undergone logical consistency checks? Minimizing manual effort is also essential for enhancing automation. To address these challenges, we introduce two datasets, FH41K and CelebA-logic, and propose LogicNet, an adversarial training framework that learns the logical relationships between attributes. Accuracy of LogicNet surpasses that of the next-best approach by 23.05%, 9.96%, and 1.71% on FH37K, FH41K, and CelebA-logic, respectively. In real-world case analysis, our approach can achieve a reduction of more than 50% in the average number of failed cases compared to other methods.
Abstract:Continual learning algorithms are typically exposed to untrusted sources that contain training data inserted by adversaries and bad actors. An adversary can insert a small number of poisoned samples, such as mislabeled samples from previously learned tasks, or intentional adversarial perturbed samples, into the training datasets, which can drastically reduce the model's performance. In this work, we demonstrate that continual learning systems can be manipulated by malicious misinformation and present a new category of data poisoning attacks specific for continual learners, which we refer to as {\em Poisoning Attacks Against Continual Learners} (PACOL). The effectiveness of labeling flipping attacks inspires PACOL; however, PACOL produces attack samples that do not change the sample's label and produce an attack that causes catastrophic forgetting. A comprehensive set of experiments shows the vulnerability of commonly used generative replay and regularization-based continual learning approaches against attack methods. We evaluate the ability of label-flipping and a new adversarial poison attack, namely PACOL proposed in this work, to force the continual learning system to forget the knowledge of a learned task(s). More specifically, we compared the performance degradation of continual learning systems trained on benchmark data streams with and without poisoning attacks. Moreover, we discuss the stealthiness of the attacks in which we test the success rate of data sanitization defense and other outlier detection-based defenses for filtering out adversarial samples.
Abstract:Web-scale ranking systems at Meta serving billions of users is complex. Improving ranking models is essential but engineering heavy. Automated Machine Learning (AutoML) can release engineers from labor intensive work of tuning ranking models; however, it is unknown if AutoML is efficient enough to meet tight production timeline in real-world and, at the same time, bring additional improvements to the strong baselines. Moreover, to achieve higher ranking performance, there is an ever-increasing demand to scale up ranking models to even larger capacity, which imposes more challenges on the efficiency. The large scale of models and tight production schedule requires AutoML to outperform human baselines by only using a small number of model evaluation trials (around 100). We presents a sampling-based AutoML method, focusing on neural architecture search and hyperparameter optimization, addressing these challenges in Meta-scale production when building large capacity models. Our approach efficiently handles large-scale data demands. It leverages a lightweight predictor-based searcher and reinforcement learning to explore vast search spaces, significantly reducing the number of model evaluations. Through experiments in large capacity modeling for CTR and CVR applications, we show that our method achieves outstanding Return on Investment (ROI) versus human tuned baselines, with up to 0.09% Normalized Entropy (NE) loss reduction or $25\%$ Query per Second (QPS) increase by only sampling one hundred models on average from a curated search space. The proposed AutoML method has already made real-world impact where a discovered Instagram CTR model with up to -0.36% NE gain (over existing production baseline) was selected for large-scale online A/B test and show statistically significant gain. These production results proved AutoML efficacy and accelerated its adoption in ranking systems at Meta.
Abstract:Effective user representations are pivotal in personalized advertising. However, stringent constraints on training throughput, serving latency, and memory, often limit the complexity and input feature set of online ads ranking models. This challenge is magnified in extensive systems like Meta's, which encompass hundreds of models with diverse specifications, rendering the tailoring of user representation learning for each model impractical. To address these challenges, we present Scaling User Modeling (SUM), a framework widely deployed in Meta's ads ranking system, designed to facilitate efficient and scalable sharing of online user representation across hundreds of ads models. SUM leverages a few designated upstream user models to synthesize user embeddings from massive amounts of user features with advanced modeling techniques. These embeddings then serve as inputs to downstream online ads ranking models, promoting efficient representation sharing. To adapt to the dynamic nature of user features and ensure embedding freshness, we designed SUM Online Asynchronous Platform (SOAP), a latency free online serving system complemented with model freshness and embedding stabilization, which enables frequent user model updates and online inference of user embeddings upon each user request. We share our hands-on deployment experiences for the SUM framework and validate its superiority through comprehensive experiments. To date, SUM has been launched to hundreds of ads ranking models in Meta, processing hundreds of billions of user requests daily, yielding significant online metric gains and infrastructure cost savings.
Abstract:Medical time series data are indispensable in healthcare, providing critical insights for disease diagnosis, treatment planning, and patient management. The exponential growth in data complexity, driven by advanced sensor technologies, has presented challenges related to data labeling. Self-supervised learning (SSL) has emerged as a transformative approach to address these challenges, eliminating the need for extensive human annotation. In this study, we introduce a novel framework for Medical Time Series Representation Learning, known as MTS-LOF. MTS-LOF leverages the strengths of contrastive learning and Masked Autoencoder (MAE) methods, offering a unique approach to representation learning for medical time series data. By combining these techniques, MTS-LOF enhances the potential of healthcare applications by providing more sophisticated, context-rich representations. Additionally, MTS-LOF employs a multi-masking strategy to facilitate occlusion-invariant feature learning. This approach allows the model to create multiple views of the data by masking portions of it. By minimizing the discrepancy between the representations of these masked patches and the fully visible patches, MTS-LOF learns to capture rich contextual information within medical time series datasets. The results of experiments conducted on diverse medical time series datasets demonstrate the superiority of MTS-LOF over other methods. These findings hold promise for significantly enhancing healthcare applications by improving representation learning. Furthermore, our work delves into the integration of joint-embedding SSL and MAE techniques, shedding light on the intricate interplay between temporal and structural dependencies in healthcare data. This understanding is crucial, as it allows us to grasp the complexities of healthcare data analysis.