Arizona State University
Abstract:To improve the convergence speed and optimization accuracy of the Dung Beetle Optimizer (DBO), this paper proposes an improved algorithm based on circle mapping and longitudinal-horizontal crossover strategy (CICRDBO). First, the Circle method is used to map the initial population to increase diversity. Second, the longitudinal-horizontal crossover strategy is applied to enhance the global search ability by ensuring the position updates of the dung beetle. Simulations were conducted on 10 benchmark test functions, and the results demonstrate that the improved algorithm performs well in both convergence speed and optimization accuracy. The improved algorithm is further applied to the hyperparameter selection of the Random Forest classification algorithm for binary classification prediction in the retail industry. Various combination comparisons prove the practicality of the improved algorithm, followed by SHapley Additive exPlanations (SHAP) analysis.
Abstract:Recent advances in foundation models have established scaling laws that enable the development of larger models to achieve enhanced performance, motivating extensive research into large-scale recommendation models. However, simply increasing the model size in recommendation systems, even with large amounts of data, does not always result in the expected performance improvements. In this paper, we propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models, each with its own embedding table, to capture unique feature interaction patterns. Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning, where models iteratively refine their predictions. To dynamically balance contributions from each model, we introduce a confidence-based fusion mechanism using general softmax, where model confidence is computed via negation entropy. This design ensures that more confident models have a greater influence on the final prediction while benefiting from the complementary strengths of other models. We validate our framework on three public datasets (AmazonElectronics, TaobaoAds, and KuaiVideo) as well as a large-scale industrial dataset from Meta, demonstrating its superior performance over individual models and state-of-the-art baselines. Additionally, we conduct further experiments on the Criteo and Avazu datasets to compare our method with the multi-embedding paradigm. Our results show that our framework achieves comparable or better performance with smaller embedding sizes, offering a scalable and efficient solution for CTR prediction tasks.
Abstract:Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
Abstract:We introduce DiffFNO, a novel diffusion framework for arbitrary-scale super-resolution strengthened by a Weighted Fourier Neural Operator (WFNO). Mode Re-balancing in WFNO effectively captures critical frequency components, significantly improving the reconstruction of high-frequency image details that are crucial for super-resolution tasks. Gated Fusion Mechanism (GFM) adaptively complements WFNO's spectral features with spatial features from an Attention-based Neural Operator (AttnNO). This enhances the network's capability to capture both global structures and local details. Adaptive Time-Step (ATS) ODE solver, a deterministic sampling strategy, accelerates inference without sacrificing output quality by dynamically adjusting integration step sizes ATS. Extensive experiments demonstrate that DiffFNO achieves state-of-the-art (SOTA) results, outperforming existing methods across various scaling factors by a margin of 2 to 4 dB in PSNR, including those beyond the training distribution. It also achieves this at lower inference time. Our approach sets a new standard in super-resolution, delivering both superior accuracy and computational efficiency.
Abstract:Ensuring safety on construction sites is critical, with helmets playing a key role in reducing injuries. Traditional safety checks are labor-intensive and often insufficient. This study presents a computer vision-based solution using YOLO for real-time helmet detection, leveraging the SHEL5K dataset. Our proposed CIB-SE-YOLOv8 model incorporates SE attention mechanisms and modified C2f blocks, enhancing detection accuracy and efficiency. This model offers a more effective solution for promoting safety compliance on construction sites.
Abstract:In e-commerce websites, web mining web page recommendation technology has been widely used. However, recommendation solutions often cannot meet the actual application needs of online shopping users. To address this problem, this paper proposes an e-commerce web page recommendation solution that combines semantic web mining and BP neural networks. First, the web logs of user searches are processed, and 5 features are extracted: content priority, time consumption priority, online shopping users' explicit/implicit feedback on the website, recommendation semantics and input deviation amount. Then, these features are used as input features of the BP neural network to classify and identify the priority of the final output web page. Finally, the web pages are sorted according to priority and recommended to users. This project uses book sales webpages as samples for experiments. The results show that this solution can quickly and accurately identify the webpages required by users.
Abstract:Skin lesions are an increasingly significant medical concern, varying widely in severity from benign to cancerous. Accurate diagnosis is essential for ensuring timely and appropriate treatment. This study examines the implementation of deep learning methods to assist in the diagnosis of skin lesions using the HAM10000 dataset, which contains seven distinct types of lesions. First, we evaluated three pre-trained models: MobileNetV2, ResNet18, and VGG11, achieving accuracies of 0.798, 0.802, and 0.805, respectively. To further enhance classification accuracy, we developed ensemble models employing max voting, average voting, and stacking, resulting in accuracies of 0.803, 0.82, and 0.83. Building on the best-performing ensemble learning model, stacking, we developed our proposed model, SkinNet, which incorporates a customized architecture and fine-tuning, achieving an accuracy of 0.867 and an AUC of 0.96. This substantial improvement over individual models demonstrates the effectiveness of ensemble learning in improving skin lesion classification.
Abstract:Many people die from lung-related diseases every year. X-ray is an effective way to test if one is diagnosed with a lung-related disease or not. This study concentrates on categorizing three distinct types of lung X-rays: those depicting healthy lungs, those showing lung opacities, and those indicative of viral pneumonia. Accurately diagnosing the disease at an early phase is critical. In this paper, five different pre-trained models will be tested on the Lung X-ray Image Dataset. SqueezeNet, VGG11, ResNet18, DenseNet, and MobileNetV2 achieved accuracies of 0.64, 0.85, 0.87, 0.88, and 0.885, respectively. MobileNetV2, as the best-performing pre-trained model, will then be further analyzed as the base model. Eventually, our own model, MobileNet-Lung based on MobileNetV2, with fine-tuning and an additional layer of attention within feature layers, was invented to tackle the lung disease classification task and achieved an accuracy of 0.933. This result is significantly improved compared with all five pre-trained models.
Abstract:Temporal knowledge graph completion aims to infer the missing facts in temporal knowledge graphs. Current approaches usually embed factual knowledge into continuous vector space and apply geometric operations to learn potential patterns in temporal knowledge graphs. However, these methods only adopt a single operation, which may have limitations in capturing the complex temporal dynamics present in temporal knowledge graphs. Therefore, we propose a simple but effective method, i.e. TCompoundE, which is specially designed with two geometric operations, including time-specific and relation-specific operations. We provide mathematical proofs to demonstrate the ability of TCompoundE to encode various relation patterns. Experimental results show that our proposed model significantly outperforms existing temporal knowledge graph embedding models. Our code is available at https://github.com/nk-ruiying/TCompoundE.
Abstract:Brain tumors are among the deadliest diseases in the world. Magnetic Resonance Imaging (MRI) is one of the most effective ways to detect brain tumors. Accurate detection of brain tumors based on MRI scans is critical, as it can potentially save many lives and facilitate better decision-making at the early stages of the disease. Within our paper, four different types of MRI-based images have been collected from the database: glioma tumor, no tumor, pituitary tumor, and meningioma tumor. Our study focuses on making predictions for brain tumor classification. Five models, including four pre-trained models (MobileNet, EfficientNet-B0, ResNet-18, and VGG16) and one new model, MobileNet-BT, have been proposed for this study.