Abstract:In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
Abstract:CPU-based trusted execution environments (TEEs) and differential privacy (DP) have gained wide applications for private inference. Due to high inference latency in TEEs, researchers use partition-based approaches that offload linear model components to GPUs. However, dense nonlinear layers of large language models (LLMs) result in significant communication overhead between TEEs and GPUs. DP-based approaches apply random noise to protect data privacy, but this compromises LLM performance and semantic understanding. To overcome the above drawbacks, this paper proposes CMIF, a Confidential and efficient Model Inference Framework. CMIF confidentially deploys the embedding layer in the client-side TEE and subsequent layers on GPU servers. Meanwhile, it optimizes the Report-Noisy-Max mechanism to protect sensitive inputs with a slight decrease in model performance. Extensive experiments on Llama-series models demonstrate that CMIF reduces additional inference overhead in TEEs while preserving user data privacy.
Abstract:Neural video codecs (NVCs), leveraging the power of end-to-end learning, have demonstrated remarkable coding efficiency improvements over traditional video codecs. Recent research has begun to pay attention to the quality structures in NVCs, optimizing them by introducing explicit hierarchical designs. However, less attention has been paid to the reference structure design, which fundamentally should be aligned with the hierarchical quality structure. In addition, there is still significant room for further optimization of the hierarchical quality structure. To address these challenges in NVCs, we propose EHVC, an efficient hierarchical neural video codec featuring three key innovations: (1) a hierarchical multi-reference scheme that draws on traditional video codec design to align reference and quality structures, thereby addressing the reference-quality mismatch; (2) a lookahead strategy to utilize an encoder-side context from future frames to enhance the quality structure; (3) a layer-wise quality scale with random quality training strategy to stabilize quality structures during inference. With these improvements, EHVC achieves significantly superior performance to the state-of-the-art NVCs. Code will be released in: https://github.com/bytedance/NEVC.
Abstract:Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose \textbf{SemToken}, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to $2.4\times$ reduction in token count and $1.9\times$ speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
Abstract:Federated learning (FL) enables decentralized clients to train a model collaboratively without sharing local data. A key distinction between FL and centralized learning is that clients' data are non-independent and identically distributed, which poses significant challenges in training a global model that generalizes well across heterogeneous local data distributions. In this paper, we analyze the convergence of overparameterized FedAvg with gradient descent (GD). We prove that the impact of data heterogeneity diminishes as the width of neural networks increases, ultimately vanishing when the width approaches infinity. In the infinite-width regime, we further prove that both the global and local models in FedAvg behave as linear models, and that FedAvg achieves the same generalization performance as centralized learning with the same number of GD iterations. Extensive experiments validate our theoretical findings across various network architectures, loss functions, and optimization methods.
Abstract:Recent advances in large language models (LLMs) highlight a strong connection between intelligence and compression. Learned image compression, a fundamental task in modern data compression, has made significant progress in recent years. However, current models remain limited in scale, restricting their representation capacity, and how scaling model size influences compression performance remains unexplored. In this work, we present a pioneering study on scaling up learned image compression models and revealing the performance trends through scaling laws. Using the recent state-of-the-art HPCM model as baseline, we scale model parameters from 68.5 millions to 1 billion and fit power-law relations between test loss and key scaling variables, including model size and optimal training compute. The results reveal a scaling trend, enabling extrapolation to larger scale models. Experimental results demonstrate that the scaled-up HPCM-1B model achieves state-of-the-art rate-distortion performance. We hope this work inspires future exploration of large-scale compression models and deeper investigations into the connection between compression and intelligence.
Abstract:Microwave Tomography (MWT) aims to reconstruct the dielectric properties of tissues from measured scattered electromagnetic fields. This inverse problem is highly nonlinear and ill-posed, posing significant challenges for conventional optimization-based methods, which, despite being grounded in physical models, often fail to recover fine structural details. Recent deep learning strategies, including end-to-end and post-processing networks, have improved reconstruction quality but typically require large paired training datasets and may struggle to generalize. To overcome these limitations, we propose a physics-informed hybrid framework that integrates diffusion models as learned regularization within a data-consistency-driven variational scheme. Specifically, we introduce Single-Step Diffusion Regularization (SSD-Reg), a novel approach that embeds diffusion priors into the iterative reconstruction process, enabling the recovery of complex anatomical structures without the need for paired data. SSD-Reg maintains fidelity to both the governing physics and learned structural distributions, improving accuracy, stability, and robustness. Extensive experiments demonstrate that SSD-Reg, implemented as a Plug-and-Play (PnP) module, provides a flexible and effective solution for tackling the ill-posedness inherent in functional image reconstruction.
Abstract:Most existing low-light image enhancement approaches primarily focus on architectural innovations, while often overlooking the intrinsic uncertainty within feature representations particularly under extremely dark conditions where degraded gradient and noise dominance severely impair model reliability and causal reasoning. To address these issues, we propose U2CLLIE, a novel framework that integrates uncertainty-aware enhancement and spatial-color causal correlation modeling. From the perspective of entropy-based uncertainty, our framework introduces two key components: (1) An Uncertainty-Aware Dual-domain Denoise (UaD) Module, which leverages Gaussian-Guided Adaptive Frequency Domain Feature Enhancement (G2AF) to suppress frequency-domain noise and optimize entropy-driven representations. This module enhances spatial texture extraction and frequency-domain noise suppression/structure refinement, effectively mitigating gradient vanishing and noise dominance. (2) A hierarchical causality-aware framework, where a Luminance Enhancement Network (LEN) first performs coarse brightness enhancement on dark regions. Then, during the encoder-decoder phase, two asymmetric causal correlation modeling modules Neighborhood Correlation State Space (NeCo) and Adaptive Spatial-Color Calibration (AsC) collaboratively construct hierarchical causal constraints. These modules reconstruct and reinforce neighborhood structure and color consistency in the feature space. Extensive experiments demonstrate that U2CLLIE achieves state-of-the-art performance across multiple benchmark datasets, exhibiting robust performance and strong generalization across various scenes.
Abstract:3D Gaussian Splatting (3DGS) has recently gained popularity in SLAM applications due to its fast rendering and high-fidelity representation. However, existing 3DGS-SLAM systems have predominantly focused on indoor environments and relied on active depth sensors, leaving a gap for large-scale outdoor applications. We present BGS-SLAM, the first binocular 3D Gaussian Splatting SLAM system designed for outdoor scenarios. Our approach uses only RGB stereo pairs without requiring LiDAR or active sensors. BGS-SLAM leverages depth estimates from pre-trained deep stereo networks to guide 3D Gaussian optimization with a multi-loss strategy enhancing both geometric consistency and visual quality. Experiments on multiple datasets demonstrate that BGS-SLAM achieves superior tracking accuracy and mapping performance compared to other 3DGS-based solutions in complex outdoor environments.
Abstract:Recent works have correlated Masked Image Modeling (MIM) with consistency regularization in Unsupervised Domain Adaptation (UDA). However, they merely treat masking as a special form of deformation on the input images and neglect the theoretical analysis, which leads to a superficial understanding of masked reconstruction and insufficient exploitation of its potential in enhancing feature extraction and representation learning. In this paper, we reframe masked reconstruction as a sparse signal reconstruction problem and theoretically prove that the dual form of complementary masks possesses superior capabilities in extracting domain-agnostic image features. Based on this compelling insight, we propose MaskTwins, a simple yet effective UDA framework that integrates masked reconstruction directly into the main training pipeline. MaskTwins uncovers intrinsic structural patterns that persist across disparate domains by enforcing consistency between predictions of images masked in complementary ways, enabling domain generalization in an end-to-end manner. Extensive experiments verify the superiority of MaskTwins over baseline methods in natural and biological image segmentation. These results demonstrate the significant advantages of MaskTwins in extracting domain-invariant features without the need for separate pre-training, offering a new paradigm for domain-adaptive segmentation.