Abstract:Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
Abstract:Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to catastrophic forgetting that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, a task-wise adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the state-of-the-art performance of DPTA. The code will be open-sourced after the paper is published.
Abstract:Large-scale datasets have been pivotal to the advancements of deep learning models in recent years, but training on such large datasets invariably incurs substantial storage and computational overhead. Meanwhile, real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance. Data selection has shown promise in identifying the most representative samples from the entire dataset, which aims to minimize the performance gap with reduced training costs. Existing works typically rely on single-modality information to assign importance scores for individual samples, which may lead to inaccurate assessments, especially when dealing with noisy or corrupted samples. To address this limitation, we propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection. Specifically, our framework consists of three key modules-dataset adaptation, sample scoring, and selection optimization-that together harness extensive pre-trained multimodal knowledge to comprehensively assess sample influence and optimize the selection results through multi-objective optimization. Extensive experiments demonstrate that our approach consistently outperforms existing state-of-the-art baselines on various benchmark datasets. Notably, our method effectively removes noisy or damaged samples from the dataset, enabling it to achieve even higher performance with less data. This indicates that it is not only a way to accelerate training but can also improve overall data quality.
Abstract:Data augmentation (DA) has been widely used to improve the generalization of deep neural networks. While existing DA methods have proven effective, they often rely on augmentation operations with random magnitudes to each sample. However, this approach can inadvertently introduce noise, induce distribution shifts, and increase the risk of overfitting. In this paper, we propose EntAugment, a tuning-free and adaptive DA framework. Unlike previous work, EntAugment dynamically assesses and adjusts the augmentation magnitudes for each sample during training, leveraging insights into both the inherent complexities of training samples and the evolving status of deep models. Specifically, in EntAugment, the magnitudes are determined by the information entropy derived from the probability distribution obtained by applying the softmax function to the model's output. In addition, to further enhance the efficacy of EntAugment, we introduce a novel entropy regularization term, EntLoss, which complements the EntAugment approach. Theoretical analysis further demonstrates that EntLoss, compared to traditional cross-entropy loss, achieves closer alignment between the model distributions and underlying dataset distributions. Moreover, EntAugment and EntLoss can be utilized separately or jointly. We conduct extensive experiments across multiple image classification tasks and network architectures with thorough comparisons of existing DA methods. Importantly, the proposed methods outperform others without introducing any auxiliary models or noticeable extra computational costs, highlighting both effectiveness and efficiency. Code is available at https://github.com/Jackbrocp/EntAugment.
Abstract:Data augmentation (DA) is widely employed to improve the generalization performance of deep models. However, most existing DA methods use augmentation operations with random magnitudes throughout training. While this fosters diversity, it can also inevitably introduce uncontrolled variability in augmented data, which may cause misalignment with the evolving training status of the target models. Both theoretical and empirical findings suggest that this misalignment increases the risks of underfitting and overfitting. To address these limitations, we propose AdaAugment, an innovative and tuning-free Adaptive Augmentation method that utilizes reinforcement learning to dynamically adjust augmentation magnitudes for individual training samples based on real-time feedback from the target network. Specifically, AdaAugment features a dual-model architecture consisting of a policy network and a target network, which are jointly optimized to effectively adapt augmentation magnitudes. The policy network optimizes the variability within the augmented data, while the target network utilizes the adaptively augmented samples for training. Extensive experiments across benchmark datasets and deep architectures demonstrate that AdaAugment consistently outperforms other state-of-the-art DA methods in effectiveness while maintaining remarkable efficiency.
Abstract:While deep neural networks have demonstrated remarkable performance across various tasks, they typically require massive training data. Due to the presence of redundancies and biases in real-world datasets, not all data in the training dataset contributes to the model performance. To address this issue, dataset pruning techniques have been introduced to enhance model performance and efficiency by eliminating redundant training samples and reducing computational and memory overhead. However, previous works most rely on manually crafted scalar scores, limiting their practical performance and scalability across diverse deep networks and datasets. In this paper, we propose AdaPruner, an end-to-end Adaptive DAtaset PRUNing framEwoRk. AdaPruner can perform effective dataset pruning without the need for explicitly defined metrics. Our framework jointly prunes training data and fine-tunes models with task-specific optimization objectives. AdaPruner leverages (1) An adaptive dataset pruning (ADP) module, which iteratively prunes redundant samples to an expected pruning ratio; and (2) A pruning performance controller (PPC) module, which optimizes the model performance for accurate pruning. Therefore, AdaPruner exhibits high scalability and compatibility across various datasets and deep networks, yielding improved dataset distribution and enhanced model performance. AdaPruner can still significantly enhance model performance even after pruning up to 10-30\% of the training data. Notably, these improvements are accompanied by substantial savings in memory and computation costs. Qualitative and quantitative experiments suggest that AdaPruner outperforms other state-of-the-art dataset pruning methods by a large margin.
Abstract:Interpolation methodologies have been widely used within the domain of indoor positioning systems. However, existing indoor positioning interpolation algorithms exhibit several inherent limitations, including reliance on complex mathematical models, limited flexibility, and relatively low precision. To enhance the accuracy and efficiency of indoor positioning interpolation techniques, this paper proposes a simple yet powerful geometric-aware interpolation algorithm for indoor positioning tasks. The key to our algorithm is to exploit the geometric attributes of the local topological manifold using manifold learning principles. Therefore, instead of constructing complicated mathematical models, the proposed algorithm facilitates the more precise and efficient estimation of points grounded in the local topological manifold. Moreover, our proposed method can be effortlessly integrated into any indoor positioning system, thereby bolstering its adaptability. Through a systematic array of experiments and comprehensive performance analyses conducted on both simulated and real-world datasets, we demonstrate that the proposed algorithm consistently outperforms the most commonly used and representative interpolation approaches regarding interpolation accuracy and efficiency. Furthermore, the experimental results also underscore the substantial practical utility of our method and its potential applicability in real-time indoor positioning scenarios.
Abstract:Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
Abstract:Image transformation, a class of vision and graphics problems whose goal is to learn the mapping between an input image and an output image, develops rapidly in the context of deep neural networks. In Computer Vision (CV), many problems can be regarded as the image transformation task, e.g., semantic segmentation and style transfer. These works have different topics and motivations, making the image transformation task flourishing. Some surveys only review the research on style transfer or image-to-image translation, all of which are just a branch of image transformation. However, none of the surveys summarize those works together in a unified framework to our best knowledge. This paper proposes a novel learning framework including Independent learning, Guided learning, and Cooperative learning, called the IGC learning framework. The image transformation we discuss mainly involves the general image-to-image translation and style transfer about deep neural networks. From the perspective of this framework, we review those subtasks and give a unified interpretation of various scenarios. We categorize related subtasks about the image transformation according to similar development trends. Furthermore, experiments have been performed to verify the effectiveness of IGC learning. Finally, new research directions and open problems are discussed for future research.
Abstract:Deep learning has achieved remarkable results in many computer vision tasks. Deep neural networks typically rely on large amounts of training data to avoid overfitting. However, labeled data for real-world applications may be limited. By improving the quantity and diversity of training data, data augmentation has become an inevitable part of deep learning model training with image data. As an effective way to improve the sufficiency and diversity of training data, data augmentation has become a necessary part of successful application of deep learning models on image data. In this paper, we systematically review different image data augmentation methods. We propose a taxonomy of reviewed methods and present the strengths and limitations of these methods. We also conduct extensive experiments with various data augmentation methods on three typical computer vision tasks, including semantic segmentation, image classification and object detection. Finally, we discuss current challenges faced by data augmentation and future research directions to put forward some useful research guidance.