Abstract:Coding, which targets compressing and reconstructing data, and intelligence, often regarded at an abstract computational level as being centered around model learning and prediction, interweave recently to give birth to a series of significant progress. The recent trends demonstrate the potential homogeneity of these two fields, especially when deep-learning models aid these two categories for better probability modeling. For better understanding and describing from a unified perspective, inspired by the basic generally recognized principles in cognitive psychology, we formulate a novel problem of Coding for Intelligence from the category theory view. Based on the three axioms: existence of ideal coding, existence of practical coding, and compactness promoting generalization, we derive a general framework to understand existing methodologies, namely that, coding captures the intrinsic relationships of objects as much as possible, while ignoring information irrelevant to downstream tasks. This framework helps identify the challenges and essential elements in solving the specific derived Minimal Description Length (MDL) optimization problem from a broader range, providing opportunities to build a more intelligent system for handling multiple tasks/applications with coding ideas/tools. Centering on those elements, we systematically review recent processes of towards optimizing the MDL problem in more comprehensive ways from data, model, and task perspectives, and reveal their impacts on the potential CfI technical routes. After that, we also present new technique paths to fulfill CfI and provide potential solutions with preliminary experimental evidence. Last, further directions and remaining issues are discussed as well. The discussion shows our theory can reveal many phenomena and insights about large foundation models, which mutually corroborate with recent practices in feature learning.
Abstract:Data-Free Meta-Learning (DFML) aims to derive knowledge from a collection of pre-trained models without accessing their original data, enabling the rapid adaptation to new unseen tasks. Current methods often overlook the heterogeneity among pre-trained models, which leads to performance degradation due to task conflicts. In this paper, we empirically and theoretically identify and analyze the model heterogeneity in DFML. We find that model heterogeneity introduces a heterogeneity-homogeneity trade-off, where homogeneous models reduce task conflicts but also increase the overfitting risk. Balancing this trade-off is crucial for learning shared representations across tasks. Based on our findings, we propose Task Groupings Regularization, a novel approach that benefits from model heterogeneity by grouping and aligning conflicting tasks. Specifically, we embed pre-trained models into a task space to compute dissimilarity, and group heterogeneous models together based on this measure. Then, we introduce implicit gradient regularization within each group to mitigate potential conflicts. By encouraging a gradient direction suitable for all tasks, the meta-model captures shared representations that generalize across tasks. Comprehensive experiments showcase the superiority of our approach in multiple benchmarks, effectively tackling the model heterogeneity in challenging multi-domain and multi-architecture scenarios.
Abstract:Data-Free Meta-Learning (DFML) aims to extract knowledge from a collection of pre-trained models without requiring the original data, presenting practical benefits in contexts constrained by data privacy concerns. Current DFML methods primarily focus on the data recovery from these pre-trained models. However, they suffer from slow recovery speed and overlook gaps inherent in heterogeneous pre-trained models. In response to these challenges, we introduce the Faster and Better Data-Free Meta-Learning (FREE) framework, which contains: (i) a meta-generator for rapidly recovering training tasks from pre-trained models; and (ii) a meta-learner for generalizing to new unseen tasks. Specifically, within the module Faster Inversion via Meta-Generator, each pre-trained model is perceived as a distinct task. The meta-generator can rapidly adapt to a specific task in just five steps, significantly accelerating the data recovery. Furthermore, we propose Better Generalization via Meta-Learner and introduce an implicit gradient alignment algorithm to optimize the meta-learner. This is achieved as aligned gradient directions alleviate potential conflicts among tasks from heterogeneous pre-trained models. Empirical experiments on multiple benchmarks affirm the superiority of our approach, marking a notable speed-up (20$\times$) and performance enhancement (1.42\% $\sim$ 4.78\%) in comparison to the state-of-the-art.
Abstract:Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data. Existing inversion-based DFML methods construct pseudo tasks from a learnable dataset, which is inversely generated from the pre-trained model pool. For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift (TDS) and Task-Distribution Corruption (TDC). TDS leads to a biased meta-learner because of the skewed task distribution towards newly generated tasks. TDC occurs when untrusted models characterized by misleading labels or poor quality pollute the task distribution. To tackle these issues, we introduce a robust DFML framework that ensures task distributional robustness. We propose to meta-learn from a pseudo task distribution, diversified through task interpolation within a compact task-memory buffer. This approach reduces the meta-learner's overreliance on newly generated tasks by maintaining consistent performance across a broader range of interpolated memory tasks, thus ensuring its generalization for unseen tasks. Additionally, our framework seamlessly incorporates an automated model selection mechanism into the meta-training phase, parameterizing each model's reliability as a learnable weight. This is optimized with a policy gradient algorithm inspired by reinforcement learning, effectively addressing the non-differentiable challenge posed by model selection. Comprehensive experiments across various datasets demonstrate the framework's effectiveness in mitigating TDS and TDC, underscoring its potential to improve DFML in real-world scenarios.
Abstract:Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models. However, selecting the optimal pre-trained model from a diverse pool for a specific downstream task remains a challenge. Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels, but they overlook the impact of underlying representation dynamics during fine-tuning, leading to unreliable results, especially for self-supervised models. In this paper, we present an insightful physics-inspired approach named PED to address these challenges. We reframe the challenge of model selection through the lens of potential energy and directly model the interaction forces that influence fine-tuning dynamics. By capturing the motion of dynamic representations to decline the potential energy within a force-driven physical model, we can acquire an enhanced and more stable observation for estimating transferability. The experimental results on 10 downstream tasks and 12 self-supervised models demonstrate that our approach can seamlessly integrate into existing ranking techniques and enhance their performances, revealing its effectiveness for the model selection task and its potential for understanding the mechanism in transfer learning. Code will be available at https://github.com/lixiaotong97/PED.
Abstract:Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data. Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models (iii) with the same architecture, neglecting the more practical setting where the users only have inference access to the APIs with arbitrary model architectures and model scale inside. To solve this issue, we propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single meta model. Specifically, by just querying APIs, we inverse each API to recover its training data via a zero-order gradient estimator and then perform meta-learning via a novel bi-level meta knowledge distillation structure, in which we design a boundary query set recovery technique to recover a more informative query set near the decision boundary. In addition, to encourage better generalization within the setting of limited API budgets, we propose task memory replay to diversify the underlying task distribution by covering more interpolated tasks. Extensive experiments in various real-world scenarios show the superior performance of our BiDf-MKD framework.
Abstract:The goal of data-free meta-learning is to learn useful prior knowledge from a collection of pre-trained models without accessing their training data. However, existing works only solve the problem in parameter space, which (i) ignore the fruitful data knowledge contained in the pre-trained models; (ii) can not scale to large-scale pre-trained models; (iii) can only meta-learn pre-trained models with the same network architecture. To address those issues, we propose a unified framework, dubbed PURER, which contains: (1) ePisode cUrriculum inveRsion (ECI) during data-free meta training; and (2) invErsion calibRation following inner loop (ICFIL) during meta testing. During meta training, we propose ECI to perform pseudo episode training for learning to adapt fast to new unseen tasks. Specifically, we progressively synthesize a sequence of pseudo episodes by distilling the training data from each pre-trained model. The ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model. We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner. During meta testing, we further propose a simple plug-and-play supplement-ICFIL-only used during meta testing to narrow the gap between meta training and meta testing task distribution. Extensive experiments in various real-world scenarios show the superior performance of ours.
Abstract:Though deep neural networks have achieved impressive success on various vision tasks, obvious performance degradation still exists when models are tested in out-of-distribution scenarios. In addressing this limitation, we ponder that the feature statistics (mean and standard deviation), which carry the domain characteristics of the training data, can be properly manipulated to improve the generalization ability of deep learning models. Existing methods commonly consider feature statistics as deterministic values measured from the learned features and do not explicitly model the uncertain statistics discrepancy caused by potential domain shifts during testing. In this paper, we improve the network generalization ability by modeling domain shifts with uncertainty (DSU), i.e., characterizing the feature statistics as uncertain distributions during training. Specifically, we hypothesize that the feature statistic, after considering the potential uncertainties, follows a multivariate Gaussian distribution. During inference, we propose an instance-wise adaptation strategy that can adaptively deal with the unforeseeable shift and further enhance the generalization ability of the trained model with negligible additional cost. We also conduct theoretical analysis on the aspects of generalization error bound and the implicit regularization effect, showing the efficacy of our method. Extensive experiments demonstrate that our method consistently improves the network generalization ability on multiple vision tasks, including image classification, semantic segmentation, instance retrieval, and pose estimation. Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints. Code will be released in https://github.com/lixiaotong97/DSU.
Abstract:Image BERT pre-training with masked image modeling (MIM) becomes a popular practice to cope with self-supervised representation learning. A seminal work, BEiT, casts MIM as a classification task with a visual vocabulary, tokenizing the continuous visual signals into discrete vision tokens using a pre-learned dVAE. Despite a feasible solution, the improper discretization hinders further improvements of image pre-training. Since image discretization has no ground-truth answers, we believe that the masked patch should not be assigned with a unique token id even if a better tokenizer can be obtained. In this work, we introduce an improved BERT-style image pre-training method, namely mc-BEiT, which performs MIM proxy tasks towards eased and refined multi-choice training objectives. Specifically, the multi-choice supervision for the masked image patches is formed by the soft probability vectors of the discrete token ids, which are predicted by the off-the-shelf image tokenizer and further refined by high-level inter-patch perceptions resorting to the observation that similar patches should share their choices. Extensive experiments on classification, segmentation, and detection tasks demonstrate the superiority of our method, e.g., the pre-trained ViT-B achieves 84.1% top-1 fine-tuning accuracy on ImageNet-1K classification, 50.8% mIOU on ADE20K semantic segmentation, 51.2% AP^b and 44.3% AP^m of object detection and instance segmentation on COCO, outperforming the competitive counterparts.