Abstract:Training multimodal models requires a large amount of labeled data. Active learning (AL) aim to reduce labeling costs. Most AL methods employ warm-start approaches, which rely on sufficient labeled data to train a well-calibrated model that can assess the uncertainty and diversity of unlabeled data. However, when assembling a dataset, labeled data are often scarce initially, leading to a cold-start problem. Additionally, most AL methods seldom address multimodal data, highlighting a research gap in this field. Our research addresses these issues by developing a two-stage method for Multi-Modal Cold-Start Active Learning (MMCSAL). Firstly, we observe the modality gap, a significant distance between the centroids of representations from different modalities, when only using cross-modal pairing information as self-supervision signals. This modality gap affects data selection process, as we calculate both uni-modal and cross-modal distances. To address this, we introduce uni-modal prototypes to bridge the modality gap. Secondly, conventional AL methods often falter in multimodal scenarios where alignment between modalities is overlooked. Therefore, we propose enhancing cross-modal alignment through regularization, thereby improving the quality of selected multimodal data pairs in AL. Finally, our experiments demonstrate MMCSAL's efficacy in selecting multimodal data pairs across three multimodal datasets.
Abstract:Multimodal learning is expected to boost model performance by integrating information from different modalities. However, its potential is not fully exploited because the widely-used joint training strategy, which has a uniform objective for all modalities, leads to imbalanced and under-optimized uni-modal representations. Specifically, we point out that there often exists modality with more discriminative information, e.g., vision of playing football and sound of blowing wind. They could dominate the joint training process, resulting in other modalities being significantly under-optimized. To alleviate this problem, we first analyze the under-optimized phenomenon from both the feed-forward and the back-propagation stages during optimization. Then, On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies are proposed to modulate the optimization of each modality, by monitoring the discriminative discrepancy between modalities during training. Concretely, OPM weakens the influence of the dominant modality by dropping its feature with dynamical probability in the feed-forward stage, while OGM mitigates its gradient in the back-propagation stage. In experiments, our methods demonstrate considerable improvement across a variety of multimodal tasks. These simple yet effective strategies not only enhance performance in vanilla and task-oriented multimodal models, but also in more complex multimodal tasks, showcasing their effectiveness and flexibility. The source code is available at \url{https://github.com/GeWu-Lab/BML_TPAMI2024}.
Abstract:3D perception ability is crucial for generalizable robotic manipulation. While recent foundation models have made significant strides in perception and decision-making with RGB-based input, their lack of 3D perception limits their effectiveness in fine-grained robotic manipulation tasks. To address these limitations, we propose a Depth Information Injection ($\bold{DI}^{\bold{2}}$) framework that leverages the RGB-Depth modality for policy fine-tuning, while relying solely on RGB images for robust and efficient deployment. Concretely, we introduce the Depth Completion Module (DCM) to extract the spatial prior knowledge related to depth information and generate virtual depth information from RGB inputs to aid policy deployment. Further, we propose the Depth-Aware Codebook (DAC) to eliminate noise and reduce the cumulative error from the depth prediction. In the inference phase, this framework employs RGB inputs and accurately predicted depth data to generate the manipulation action. We conduct experiments on simulated LIBERO environments and real-world scenarios, and the experiment results prove that our method could effectively enhance the pre-trained RGB-based policy with 3D perception ability for robotic manipulation. The website is released at https://gewu-lab.github.io/DepthHelps-IROS2024.
Abstract:Online Imitation Learning methods struggle with the gap between extensive online exploration space and limited expert trajectories, which hinder efficient exploration due to inaccurate task-aware reward estimation. Inspired by the findings from cognitive neuroscience that task decomposition could facilitate cognitive processing for efficient learning, we hypothesize that an agent could estimate precise task-aware imitation rewards for efficient online exploration by decomposing the target task into the objectives of "what to do" and the mechanisms of "how to do". In this work, we introduce the hybrid Key-state guided Online Imitation (KOI) learning approach, which leverages the integration of semantic and motion key states as guidance for task-aware reward estimation. Initially, we utilize the visual-language models to segment the expert trajectory into semantic key states, indicating the objectives of "what to do". Within the intervals between semantic key states, optical flow is employed to capture motion key states to understand the process of "how to do". By integrating a thorough grasp of both semantic and motion key states, we refine the trajectory-matching reward computation, encouraging task-aware exploration for efficient online imitation learning. Our experiment results prove that our method is more sample efficient in the Meta-World and LIBERO environments. We also conduct real-world robotic manipulation experiments to validate the efficacy of our method, demonstrating the practical applicability of our KOI method.
Abstract:Humans possess a remarkable talent for flexibly alternating to different senses when interacting with the environment. Picture a chef skillfully gauging the timing of ingredient additions and controlling the heat according to the colors, sounds, and aromas, seamlessly navigating through every stage of the complex cooking process. This ability is founded upon a thorough comprehension of task stages, as achieving the sub-goal within each stage can necessitate the utilization of different senses. In order to endow robots with similar ability, we incorporate the task stages divided by sub-goals into the imitation learning process to accordingly guide dynamic multi-sensory fusion. We propose MS-Bot, a stage-guided dynamic multi-sensory fusion method with coarse-to-fine stage understanding, which dynamically adjusts the priority of modalities based on the fine-grained state within the predicted current stage. We train a robot system equipped with visual, auditory, and tactile sensors to accomplish challenging robotic manipulation tasks: pouring and peg insertion with keyway. Experimental results indicate that our approach enables more effective and explainable dynamic fusion, aligning more closely with the human fusion process than existing methods.
Abstract:The Audio Visual Question Answering (AVQA) task aims to answer questions related to various visual objects, sounds, and their interactions in videos. Such naturally multimodal videos contain rich and complex dynamic audio-visual components, with only a portion of them closely related to the given questions. Hence, effectively perceiving audio-visual cues relevant to the given questions is crucial for correctly answering them. In this paper, we propose a Temporal-Spatial Perception Model (TSPM), which aims to empower the model to perceive key visual and auditory cues related to the questions. Specifically, considering the challenge of aligning non-declarative questions and visual representations into the same semantic space using visual-language pretrained models, we construct declarative sentence prompts derived from the question template, to assist the temporal perception module in better identifying critical segments relevant to the questions. Subsequently, a spatial perception module is designed to merge visual tokens from selected segments to highlight key latent targets, followed by cross-modal interaction with audio to perceive potential sound-aware areas. Finally, the significant temporal-spatial cues from these modules are integrated to answer the question. Extensive experiments on multiple AVQA benchmarks demonstrate that our framework excels not only in understanding audio-visual scenes but also in answering complex questions effectively. Code is available at https://github.com/GeWu-Lab/TSPM.
Abstract:Continual pre-training (CPT) has been an important approach for adapting language models to specific domains or tasks. To make the CPT approach more traceable, this paper presents a technical report for continually pre-training Llama-3 (8B), which significantly enhances the Chinese language ability and scientific reasoning ability of the backbone model. To enhance the new abilities while retaining the original abilities, we design specific data mixture and curriculum strategies by utilizing existing datasets and synthesizing high-quality datasets. Specifically, we synthesize multidisciplinary scientific question and answer (QA) pairs based on related web pages, and subsequently incorporate these synthetic data to improve the scientific reasoning ability of Llama-3. We refer to the model after CPT as Llama-3-SynE (Synthetic data Enhanced Llama-3). We also present the tuning experiments with a relatively small model -- TinyLlama, and employ the derived findings to train the backbone model. Extensive experiments on a number of evaluation benchmarks show that our approach can largely improve the performance of the backbone models, including both the general abilities (+8.81 on C-Eval and +6.31 on CMMLU) and the scientific reasoning abilities (+12.00 on MATH and +4.13 on SciEval), without hurting the original capacities. Our model, data, and codes are available at https://github.com/RUC-GSAI/Llama-3-SynE.
Abstract:Community researchers have developed a range of advanced audio-visual segmentation models aimed at improving the quality of sounding objects' masks. While masks created by these models may initially appear plausible, they occasionally exhibit anomalies with incorrect grounding logic. We attribute this to real-world inherent preferences and distributions as a simpler signal for learning than the complex audio-visual grounding, which leads to the disregard of important modality information. Generally, the anomalous phenomena are often complex and cannot be directly observed systematically. In this study, we made a pioneering effort with the proper synthetic data to categorize and analyze phenomena as two types "audio priming bias" and "visual prior" according to the source of anomalies. For audio priming bias, to enhance audio sensitivity to different intensities and semantics, a perception module specifically for audio perceives the latent semantic information and incorporates information into a limited set of queries, namely active queries. Moreover, the interaction mechanism related to such active queries in the transformer decoder is customized to adapt to the need for interaction regulating among audio semantics. For visual prior, multiple contrastive training strategies are explored to optimize the model by incorporating a biased branch, without even changing the structure of the model. During experiments, observation demonstrates the presence and the impact that has been produced by the biases of the existing model. Finally, through experimental evaluation of AVS benchmarks, we demonstrate the effectiveness of our methods in handling both types of biases, achieving competitive performance across all three subsets.
Abstract:Audio-Visual Segmentation (AVS) aims to achieve pixel-level localization of sound sources in videos, while Audio-Visual Semantic Segmentation (AVSS), as an extension of AVS, further pursues semantic understanding of audio-visual scenes. However, since the AVSS task requires the establishment of audio-visual correspondence and semantic understanding simultaneously, we observe that previous methods have struggled to handle this mashup of objectives in end-to-end training, resulting in insufficient learning and sub-optimization. Therefore, we propose a two-stage training strategy called \textit{Stepping Stones}, which decomposes the AVSS task into two simple subtasks from localization to semantic understanding, which are fully optimized in each stage to achieve step-by-step global optimization. This training strategy has also proved its generalization and effectiveness on existing methods. To further improve the performance of AVS tasks, we propose a novel framework Adaptive Audio Visual Segmentation, in which we incorporate an adaptive audio query generator and integrate masked attention into the transformer decoder, facilitating the adaptive fusion of visual and audio features. Extensive experiments demonstrate that our methods achieve state-of-the-art results on all three AVS benchmarks. The project homepage can be accessed at https://gewu-lab.github.io/stepping_stones/.
Abstract:Traditional reference segmentation tasks have predominantly focused on silent visual scenes, neglecting the integral role of multimodal perception and interaction in human experiences. In this work, we introduce a novel task called Reference Audio-Visual Segmentation (Ref-AVS), which seeks to segment objects within the visual domain based on expressions containing multimodal cues. Such expressions are articulated in natural language forms but are enriched with multimodal cues, including audio and visual descriptions. To facilitate this research, we construct the first Ref-AVS benchmark, which provides pixel-level annotations for objects described in corresponding multimodal-cue expressions. To tackle the Ref-AVS task, we propose a new method that adequately utilizes multimodal cues to offer precise segmentation guidance. Finally, we conduct quantitative and qualitative experiments on three test subsets to compare our approach with existing methods from related tasks. The results demonstrate the effectiveness of our method, highlighting its capability to precisely segment objects using multimodal-cue expressions. Dataset is available at \href{https://gewu-lab.github.io/Ref-AVS}{https://gewu-lab.github.io/Ref-AVS}.