Abstract:Self-improvement methods enable large language models (LLMs) to generate solutions themselves and iteratively train on filtered, high-quality rationales. This process proves effective and reduces the reliance on human supervision in LLMs' reasoning, but the performance soon plateaus. We delve into the process and find that models tend to over-sample on easy queries and under-sample on queries they have yet to master. As iterations proceed, this imbalance in sampling is exacerbated, leading to a long-tail distribution where solutions to difficult queries almost diminish. This phenomenon limits the performance gain of self-improving models. A straightforward solution is brute-force sampling to balance the distribution, which significantly raises computational costs. In this paper, we introduce Guided Self-Improvement (GSI), a strategy aimed at improving the efficiency of sampling challenging heavy-tailed data. It leverages Socratic-style guidance signals to help LLM reasoning with complex queries, reducing the exploration effort and minimizing computational overhead. Experiments on four models across diverse mathematical tasks show that GSI strikes a balance between performance and efficiency, while also being effective on held-out tasks.
Abstract:Image/video coding has been a remarkable research area for both academia and industry for many years. Testing datasets, especially high-quality image/video datasets are desirable for the justified evaluation of coding-related research, practical applications, and standardization activities. We put forward a test dataset namely USTC-TD, which has been successfully adopted in the practical end-to-end image/video coding challenge of the IEEE International Conference on Visual Communications and Image Processing in 2022 and 2023. USTC-TD contains 40 images at 4K spatial resolution and 10 video sequences at 1080p spatial resolution, featuring various content due to the diverse environmental factors (scene type, texture, motion, view) and the designed imaging factors (illumination, shadow, lens). We quantitatively evaluate USTC-TD on different image/video features (spatial, temporal, color, lightness), and compare it with the previous image/video test datasets, which verifies the wider coverage and more diversity of the proposed dataset. We also evaluate both classic standardized and recent learned image/video coding schemes on USTC-TD with PSNR and MS-SSIM, and provide an extensive benchmark for the evaluated schemes. Based on the characteristics and specific design of the proposed test dataset, we analyze the benchmark performance and shed light on the future research and development of image/video coding. All the data are released online: https://esakak.github.io/USTC-TD.
Abstract:Data assimilation has become a crucial technique aiming to combine physical models with observational data to estimate state variables. Traditional assimilation algorithms often face challenges of high nonlinearity brought by both the physical and observational models. In this work, we propose a novel data-driven assimilation algorithm based on generative models to address such concerns. Our State-Observation Augmented Diffusion (SOAD) model is designed to handle nonlinear physical and observational models more effectively. The marginal posterior associated with SOAD has been derived and then proved to match the real posterior under mild assumptions, which shows theoretical superiority over previous score-based assimilation works. Experimental results also indicate that our SOAD model may offer improved accuracy over existing data-driven methods.
Abstract:Inter prediction is a key technology to reduce the temporal redundancy in video coding. In natural videos, there are usually multiple moving objects with variable velocity, resulting in complex motion fields that are difficult to represent compactly. In Versatile Video Coding (VVC), existing inter prediction methods usually assume uniform speed motion between consecutive frames and use the linear models for motion estimation (ME) and motion compensation (MC), which may not well handle the complex motion fields in the real world. To address these issues, we introduce a uniformly accelerated motion model (UAMM) to exploit motion-related elements (velocity, acceleration) of moving objects between the video frames, and further combine them to assist the inter prediction methods to handle the variable motion in the temporal domain. Specifically, first, the theory of UAMM is mentioned. Second, based on that, we propose the UAMM-based parameter derivation and extrapolation schemes in the coding process. Third, we integrate the UAMM into existing inter prediction modes (Merge, MMVD, CIIP) to achieve higher prediction accuracy. The proposed method is implemented into the VVC reference software, VTM version 12.0. Experimental results show that the proposed method achieves up to 0.38% and on average 0.13% BD-rate reduction compared to the VTM anchor, under the Low-delay P configuration, with a slight increase of time complexity on the encoding/decoding side.
Abstract:In-loop filtering (ILF) is a key technology for removing the artifacts in image/video coding standards. Recently, neural network-based in-loop filtering methods achieve remarkable coding gains beyond the capability of advanced video coding standards, which becomes a powerful coding tool candidate for future video coding standards. However, the utilization of deep neural networks brings heavy time and computational complexity, and high demands of high-performance hardware, which is challenging to apply to the general uses of coding scene. To address this limitation, inspired by explorations in image restoration, we propose an efficient and practical in-loop filtering scheme by adopting the Look-up Table (LUT). We train the DNN of in-loop filtering within a fixed filtering reference range, and cache the output values of the DNN into a LUT via traversing all possible inputs. At testing time in the coding process, the filtered pixel is generated by locating input pixels (to-be-filtered pixel with reference pixels) and interpolating cached filtered pixel values. To further enable the large filtering reference range with the limited storage cost of LUT, we introduce the enhanced indexing mechanism in the filtering process, and clipping/finetuning mechanism in the training. The proposed method is implemented into the Versatile Video Coding (VVC) reference software, VTM-11.0. Experimental results show that the ultrafast, very fast, and fast mode of the proposed method achieves on average 0.13%/0.34%/0.51%, and 0.10%/0.27%/0.39% BD-rate reduction, under the all intra (AI) and random access (RA) configurations. Especially, our method has friendly time and computational complexity, only 101%/102%-104%/108% time increase with 0.13-0.93 kMACs/pixel, and only 164-1148 KB storage cost for a single model. Our solution may shed light on the journey of practical neural network-based coding tool evolution.
Abstract:To meet the real-time analysis requirements of video streaming applications, we propose an inter-relation-aware video complexity analyzer (IVCA) as an extension to VCA. The IVCA addresses the limitation of VCA by considering inter-frame relations, namely motion and reference structure. First, we enhance the accuracy of temporal features by introducing feature-domain motion estimation into the IVCA. Next, drawing inspiration from the hierarchical reference structure in codecs, we design layer-aware weights to adjust the majorities of frame complexity in different layers. Additionally, we expand the scope of temporal features by considering frames that be referred to, rather than relying solely on the previous frame. Experimental results show the significant improvement in complexity estimation accuracy achieved by IVCA, with minimal time complexity increase.
Abstract:Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation cost high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, a SSM-based architecture, to the point cloud domain and propose Mamba24/8D, which has strong global modeling capability under linear complexity. Specifically, to make disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200 and nuScenes, while its effectiveness is validated by extensive experiments.
Abstract:Recent advancements in language models have demonstrated their adeptness in conducting multi-turn dialogues and retaining conversational context. However, this proficiency remains largely unexplored in other multimodal generative models, particularly in human motion models. By integrating multi-turn conversations in controlling continuous virtual human movements, generative human motion models can achieve an intuitive and step-by-step process of human task execution for humanoid robotics, game agents, or other embodied systems. In this work, we present MotionChain, a conversational human motion controller to generate continuous and long-term human motion through multimodal prompts. Specifically, MotionChain consists of multi-modal tokenizers that transform various data types such as text, image, and motion, into discrete tokens, coupled with a Vision-Motion-aware Language model. By leveraging large-scale language, vision-language, and vision-motion data to assist motion-related generation tasks, MotionChain thus comprehends each instruction in multi-turn conversation and generates human motions followed by these prompts. Extensive experiments validate the efficacy of MotionChain, demonstrating state-of-the-art performance in conversational motion generation, as well as more intuitive manners of controlling and interacting with virtual humans.
Abstract:In modern video coding standards, block-based inter prediction is widely adopted, which brings high compression efficiency. However, in natural videos, there are usually multiple moving objects of arbitrary shapes, resulting in complex motion fields that are difficult to compactly represent. This problem has been tackled by more flexible block partitioning methods in the Versatile Video Coding (VVC) standard, but the more flexible partitions require more overhead bits to signal and still cannot be made arbitrary shaped. To address this limitation, we propose an object segmentation-assisted inter prediction method (SAIP), where objects in the reference frames are segmented by some advanced technologies. With a proper indication, the object segmentation mask is translated from the reference frame to the current frame as the arbitrary-shaped partition of different regions without any extra signal. Using the segmentation mask, motion compensation is separately performed for different regions, achieving higher prediction accuracy. The segmentation mask is further used to code the motion vectors of different regions more efficiently. Moreover, segmentation mask is considered in the joint rate-distortion optimization for motion estimation and partition estimation to derive the motion vector of different regions and partition more accurately. The proposed method is implemented into the VVC reference software, VTM version 12.0. Experimental results show that the proposed method achieves up to 1.98%, 1.14%, 0.79%, and on average 0.82%, 0.49%, 0.37% BD-rate reduction for common test sequences, under the Low-delay P, Low-delay B, and Random Access configurations, respectively.
Abstract:Data assimilation is crucial in a wide range of applications, but it often faces challenges such as high computational costs due to data dimensionality and incomplete understanding of underlying mechanisms. To address these challenges, this study presents a novel assimilation framework, termed Latent Assimilation with Implicit Neural Representations (LAINR). By introducing Spherical Implicit Neural Representations (SINR) along with a data-driven uncertainty estimator of the trained neural networks, LAINR enhances efficiency in assimilation process. Experimental results indicate that LAINR holds certain advantage over existing methods based on AutoEncoders, both in terms of accuracy and efficiency.