Abstract:Dynamic scenes rendering is an intriguing yet challenging problem. Although current methods based on NeRF have achieved satisfactory performance, they still can not reach real-time levels. Recently, 3D Gaussian Splatting (3DGS) has gar?nered researchers attention due to their outstanding rendering quality and real?time speed. Therefore, a new paradigm has been proposed: defining a canonical 3D gaussians and deforming it to individual frames in deformable fields. How?ever, since the coordinates of canonical 3D gaussians are filled with noise, which can transfer noise into the deformable fields, and there is currently no method that adequately considers the aggregation of 4D information. Therefore, we pro?pose Denoised Deformable Network with Temporal-Spatial Aggregation for Dy?namic Scene Rendering (DN-4DGS). Specifically, a Noise Suppression Strategy is introduced to change the distribution of the coordinates of the canonical 3D gaussians and suppress noise. Additionally, a Decoupled Temporal-Spatial Ag?gregation Module is designed to aggregate information from adjacent points and frames. Extensive experiments on various real-world datasets demonstrate that our method achieves state-of-the-art rendering quality under a real-time level.
Abstract:Dynamic scene reconstruction is a long-term challenge in the field of 3D vision. Recently, the emergence of 3D Gaussian Splatting has provided new insights into this problem. Although subsequent efforts rapidly extend static 3D Gaussian to dynamic scenes, they often lack explicit constraints on object motion, leading to optimization difficulties and performance degradation. To address the above issues, we propose a novel deformable 3D Gaussian splatting framework called MotionGS, which explores explicit motion priors to guide the deformation of 3D Gaussians. Specifically, we first introduce an optical flow decoupling module that decouples optical flow into camera flow and motion flow, corresponding to camera movement and object motion respectively. Then the motion flow can effectively constrain the deformation of 3D Gaussians, thus simulating the motion of dynamic objects. Additionally, a camera pose refinement module is proposed to alternately optimize 3D Gaussians and camera poses, mitigating the impact of inaccurate camera poses. Extensive experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods and exhibits significant superiority in both qualitative and quantitative results. Project page: https://ruijiezhu94.github.io/MotionGS_page
Abstract:3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems.
Abstract:3D object detection is essential for understanding 3D scenes. Contemporary techniques often require extensive annotated training data, yet obtaining point-wise annotations for point clouds is time-consuming and laborious. Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds. However, these pseudo-labels frequently suffer from insufficient diversity and inferior quality. To overcome these hurdles, we introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR). Specifically, an agent-based object query generator is designed to produce object queries that effectively adapt to dynamic scenes while striking a balance between sampling locations and content embedding. Additionally, a box-aware denoising module utilizes the DDIM denoising process and the long-range attention in the transformer decoder to refine bounding boxes incrementally. Extensive experiments on ScanNet and SUN RGB-D datasets demonstrate that Diff3DETR outperforms state-of-the-art semi-supervised 3D object detection methods.
Abstract:Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation cost high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, a SSM-based architecture, to the point cloud domain and propose Mamba24/8D, which has strong global modeling capability under linear complexity. Specifically, to make disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200 and nuScenes, while its effectiveness is validated by extensive experiments.
Abstract:We present Locally Orderless Networks (LON) and its theoretic foundation which links it to Convolutional Neural Networks (CNN), to Scale-space histograms, and measurement theory. The key elements are a regular sampling of the bias and the derivative of the activation function. We compare LON, CNN, and Scale-space histograms on prototypical single-layer networks. We show how LON and CNN can emulate each other, how LON expands the set of functionals computable to non-linear functions such as squaring. We demonstrate simple networks which illustrate the improved performance of LON over CNN on simple tasks for estimating the gradient magnitude squared, for regressing shape area and perimeter lengths, and for explainability of individual pixels' influence on the result.
Abstract:Foundation segmentation models, while powerful, pose a significant risk: they enable users to effortlessly extract any objects from any digital content with a single click, potentially leading to copyright infringement or malicious misuse. To mitigate this risk, we introduce a new task "Anything Unsegmentable" to grant any image "the right to be unsegmented". The ambitious pursuit of the task is to achieve highly transferable adversarial attacks against all prompt-based segmentation models, regardless of model parameterizations and prompts. We highlight the non-transferable and heterogeneous nature of prompt-specific adversarial noises. Our approach focuses on disrupting image encoder features to achieve prompt-agnostic attacks. Intriguingly, targeted feature attacks exhibit better transferability compared to untargeted ones, suggesting the optimal update direction aligns with the image manifold. Based on the observations, we design a novel attack named Unsegment Anything by Simulating Deformation (UAD). Our attack optimizes a differentiable deformation function to create a target deformed image, which alters structural information while preserving achievable feature distance by adversarial example. Extensive experiments verify the effectiveness of our approach, compromising a variety of promptable segmentation models with different architectures and prompt interfaces. We release the code at https://github.com/jiahaolu97/anything-unsegmentable.
Abstract:Unsupervised point cloud shape correspondence aims to establish point-wise correspondences between source and target point clouds. Existing methods obtain correspondences directly by computing point-wise feature similarity between point clouds. However, non-rigid objects possess strong deformability and unusual shapes, making it a longstanding challenge to directly establish correspondences between point clouds with unconventional shapes. To address this challenge, we propose an unsupervised Template-Assisted point cloud shape correspondence Network, termed TANet, including a template generation module and a template assistance module. The proposed TANet enjoys several merits. Firstly, the template generation module establishes a set of learnable templates with explicit structures. Secondly, we introduce a template assistance module that extensively leverages the generated templates to establish more accurate shape correspondences from multiple perspectives. Extensive experiments on four human and animal datasets demonstrate that TANet achieves favorable performance against state-of-the-art methods.
Abstract:3D instance segmentation (3DIS) is a crucial task, but point-level annotations are tedious in fully supervised settings. Thus, using bounding boxes (bboxes) as annotations has shown great potential. The current mainstream approach is a two-step process, involving the generation of pseudo-labels from box annotations and the training of a 3DIS network with the pseudo-labels. However, due to the presence of intersections among bboxes, not every point has a determined instance label, especially in overlapping areas. To generate higher quality pseudo-labels and achieve more precise weakly supervised 3DIS results, we propose the Box-Supervised Simulation-assisted Mean Teacher for 3D Instance Segmentation (BSNet), which devises a novel pseudo-labeler called Simulation-assisted Transformer. The labeler consists of two main components. The first is Simulation-assisted Mean Teacher, which introduces Mean Teacher for the first time in this task and constructs simulated samples to assist the labeler in acquiring prior knowledge about overlapping areas. To better model local-global structure, we also propose Local-Global Aware Attention as the decoder for teacher and student labelers. Extensive experiments conducted on the ScanNetV2 and S3DIS datasets verify the superiority of our designs. Code is available at \href{https://github.com/peoplelu/BSNet}{https://github.com/peoplelu/BSNet}.
Abstract:Unsupervised point cloud shape correspondence aims to obtain dense point-to-point correspondences between point clouds without manually annotated pairs. However, humans and some animals have bilateral symmetry and various orientations, which lead to severe mispredictions of symmetrical parts. Besides, point cloud noise disrupts consistent representations for point cloud and thus degrades the shape correspondence accuracy. To address the above issues, we propose a Self-Ensembling ORientation-aware Network termed SE-ORNet. The key of our approach is to exploit an orientation estimation module with a domain adaptive discriminator to align the orientations of point cloud pairs, which significantly alleviates the mispredictions of symmetrical parts. Additionally, we design a selfensembling framework for unsupervised point cloud shape correspondence. In this framework, the disturbances of point cloud noise are overcome by perturbing the inputs of the student and teacher networks with different data augmentations and constraining the consistency of predictions. Extensive experiments on both human and animal datasets show that our SE-ORNet can surpass state-of-the-art unsupervised point cloud shape correspondence methods.