refer to the report for detailed contributions
Abstract:Large Language Models (LLMs) have attracted significant attention in recommender systems for their excellent world knowledge capabilities. However, existing methods that rely on Euclidean space struggle to capture the rich hierarchical information inherent in textual and semantic data, which is essential for capturing user preferences. The geometric properties of hyperbolic space offer a promising solution to address this issue. Nevertheless, integrating LLMs-based methods with hyperbolic space to effectively extract and incorporate diverse hierarchical information is non-trivial. To this end, we propose a model-agnostic framework, named HyperLLM, which extracts and integrates hierarchical information from both structural and semantic perspectives. Structurally, HyperLLM uses LLMs to generate multi-level classification tags with hierarchical parent-child relationships for each item. Then, tag-item and user-item interactions are jointly learned and aligned through contrastive learning, thereby providing the model with clear hierarchical information. Semantically, HyperLLM introduces a novel meta-optimized strategy to extract hierarchical information from semantic embeddings and bridge the gap between the semantic and collaborative spaces for seamless integration. Extensive experiments show that HyperLLM significantly outperforms recommender systems based on hyperbolic space and LLMs, achieving performance improvements of over 40%. Furthermore, HyperLLM not only improves recommender performance but also enhances training stability, highlighting the critical role of hierarchical information in recommender systems.
Abstract:Reconstructing 3D scenes from monocular surgical videos can enhance surgeon's perception and therefore plays a vital role in various computer-assisted surgery tasks. However, achieving scale-consistent reconstruction remains an open challenge due to inherent issues in endoscopic videos, such as dynamic deformations and textureless surfaces. Despite recent advances, current methods either rely on calibration or instrument priors to estimate scale, or employ SfM-like multi-stage pipelines, leading to error accumulation and requiring offline optimization. In this paper, we present Endo3R, a unified 3D foundation model for online scale-consistent reconstruction from monocular surgical video, without any priors or extra optimization. Our model unifies the tasks by predicting globally aligned pointmaps, scale-consistent video depths, and camera parameters without any offline optimization. The core contribution of our method is expanding the capability of the recent pairwise reconstruction model to long-term incremental dynamic reconstruction by an uncertainty-aware dual memory mechanism. The mechanism maintains history tokens of both short-term dynamics and long-term spatial consistency. Notably, to tackle the highly dynamic nature of surgical scenes, we measure the uncertainty of tokens via Sampson distance and filter out tokens with high uncertainty. Regarding the scarcity of endoscopic datasets with ground-truth depth and camera poses, we further devise a self-supervised mechanism with a novel dynamics-aware flow loss. Abundant experiments on SCARED and Hamlyn datasets demonstrate our superior performance in zero-shot surgical video depth prediction and camera pose estimation with online efficiency. Project page: https://wrld.github.io/Endo3R/.
Abstract:We present Hunyuan3D 2.0, an advanced large-scale 3D synthesis system for generating high-resolution textured 3D assets. This system includes two foundation components: a large-scale shape generation model -- Hunyuan3D-DiT, and a large-scale texture synthesis model -- Hunyuan3D-Paint. The shape generative model, built on a scalable flow-based diffusion transformer, aims to create geometry that properly aligns with a given condition image, laying a solid foundation for downstream applications. The texture synthesis model, benefiting from strong geometric and diffusion priors, produces high-resolution and vibrant texture maps for either generated or hand-crafted meshes. Furthermore, we build Hunyuan3D-Studio -- a versatile, user-friendly production platform that simplifies the re-creation process of 3D assets. It allows both professional and amateur users to manipulate or even animate their meshes efficiently. We systematically evaluate our models, showing that Hunyuan3D 2.0 outperforms previous state-of-the-art models, including the open-source models and closed-source models in geometry details, condition alignment, texture quality, and etc. Hunyuan3D 2.0 is publicly released in order to fill the gaps in the open-source 3D community for large-scale foundation generative models. The code and pre-trained weights of our models are available at: https://github.com/Tencent/Hunyuan3D-2
Abstract:Recent developments in monocular depth estimation methods enable high-quality depth estimation of single-view images but fail to estimate consistent video depth across different frames. Recent works address this problem by applying a video diffusion model to generate video depth conditioned on the input video, which is training-expensive and can only produce scale-invariant depth values without camera poses. In this paper, we propose a novel video-depth estimation method called Align3R to estimate temporal consistent depth maps for a dynamic video. Our key idea is to utilize the recent DUSt3R model to align estimated monocular depth maps of different timesteps. First, we fine-tune the DUSt3R model with additional estimated monocular depth as inputs for the dynamic scenes. Then, we apply optimization to reconstruct both depth maps and camera poses. Extensive experiments demonstrate that Align3R estimates consistent video depth and camera poses for a monocular video with superior performance than baseline methods.
Abstract:Photometric bundle adjustment (PBA) is widely used in estimating the camera pose and 3D geometry by assuming a Lambertian world. However, the assumption of photometric consistency is often violated since the non-diffuse reflection is common in real-world environments. The photometric inconsistency significantly affects the reliability of existing PBA methods. To solve this problem, we propose a novel physically-based PBA method. Specifically, we introduce the physically-based weights regarding material, illumination, and light path. These weights distinguish the pixel pairs with different levels of photometric inconsistency. We also design corresponding models for material estimation based on sequential images and illumination estimation based on point clouds. In addition, we establish the first SLAM-related dataset of non-Lambertian scenes with complete ground truth of illumination and material. Extensive experiments demonstrated that our PBA method outperforms existing approaches in accuracy.
Abstract:2D Gaussian Splatting has recently emerged as a significant method in 3D reconstruction, enabling novel view synthesis and geometry reconstruction simultaneously. While the well-known Gaussian kernel is broadly used, its lack of anisotropy and deformation ability leads to dim and vague edges at object silhouettes, limiting the reconstruction quality of current Gaussian splatting methods. To enhance the representation power, we draw inspiration from quantum physics and propose to use the Gaussian-Hermite kernel as the new primitive in Gaussian splatting. The new kernel takes a unified mathematical form and extends the Gaussian function, which serves as the zero-rank term in the updated formulation. Our experiments demonstrate the extraordinary performance of Gaussian-Hermite kernel in both geometry reconstruction and novel-view synthesis tasks. The proposed kernel outperforms traditional Gaussian Splatting kernels, showcasing its potential for high-quality 3D reconstruction and rendering.
Abstract:The current variants of the Segment Anything Model (SAM), which include the original SAM and Medical SAM, still lack the capability to produce sufficiently accurate segmentation for medical images. In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions. These rectifications typically entail manual or semi-manual corrections employing state-of-the-art annotation tools. Motivated by this process, we introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time. We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images. To improve the effectiveness and efficiency of online learning when integrated with large-scale vision models like SAM, we propose a new method called Auxiliary Online Learning (AuxOL). AuxOL creates and applies a small auxiliary model (specialist) in conjunction with SAM (generalist), entails adaptive online-batch and adaptive segmentation fusion. Experiments conducted on eight datasets covering four medical imaging modalities validate the effectiveness of the proposed method. Our work proposes and validates a new, practical, and effective approach for enhancing SA on downstream segmentation tasks (e.g., medical image segmentation).
Abstract:Dynamic 3D interaction has witnessed great interest in recent works, while creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, and the other is to learn the deformation of static 3D objects with the distillation of video generative models. The former one requires assigning precise physical properties to the target object, otherwise the simulated results would become unnatural. The latter tends to formulate the video with minor motions and discontinuous frames, due to the absence of physical constraints in deformation learning. We think that video generative models are trained with real-world captured data, capable of judging physical phenomenon in simulation environments. To this end, we propose DreamPhysics in this work, which estimates physical properties of 3D Gaussian Splatting with video diffusion priors. DreamPhysics supports both image- and text-conditioned guidance, optimizing physical parameters via score distillation sampling with frame interpolation and log gradient. Based on a material point method simulator with proper physical parameters, our method can generate 4D content with realistic motions. Experimental results demonstrate that, by distilling the prior knowledge of video diffusion models, inaccurate physical properties can be gradually refined for high-quality simulation. Codes are released at: https://github.com/tyhuang0428/DreamPhysics.
Abstract:Given an input set of $3$D point pairs, the goal of outlier-robust $3$D registration is to compute some rotation and translation that align as many point pairs as possible. This is an important problem in computer vision, for which many highly accurate approaches have been recently proposed. Despite their impressive performance, these approaches lack scalability, often overflowing the $16$GB of memory of a standard laptop to handle roughly $30,000$ point pairs. In this paper, we propose a $3$D registration approach that can process more than ten million ($10^7$) point pairs with over $99\%$ random outliers. Moreover, our method is efficient, entails low memory costs, and maintains high accuracy at the same time. We call our method TEAR, as it involves minimizing an outlier-robust loss that computes Truncated Entry-wise Absolute Residuals. To minimize this loss, we decompose the original $6$-dimensional problem into two subproblems of dimensions $3$ and $2$, respectively, solved in succession to global optimality via a customized branch-and-bound method. While branch-and-bound is often slow and unscalable, this does not apply to TEAR as we propose novel bounding functions that are tight and computationally efficient. Experiments on various datasets are conducted to validate the scalability and efficiency of our method.
Abstract:Estimating the rigid transformation with 6 degrees of freedom based on a putative 3D correspondence set is a crucial procedure in point cloud registration. Existing correspondence identification methods usually lead to large outlier ratios ($>$ 95 $\%$ is common), underscoring the significance of robust registration methods. Many researchers turn to parameter search-based strategies (e.g., Branch-and-Bround) for robust registration. Although related methods show high robustness, their efficiency is limited to the high-dimensional search space. This paper proposes a heuristics-guided parameter search strategy to accelerate the search while maintaining high robustness. We first sample some correspondences (i.e., heuristics) and then just need to sequentially search the feasible regions that make each sample an inlier. Our strategy largely reduces the search space and can guarantee accuracy with only a few inlier samples, therefore enjoying an excellent trade-off between efficiency and robustness. Since directly parameterizing the 6-dimensional nonlinear feasible region for efficient search is intractable, we construct a three-stage decomposition pipeline to reparameterize the feasible region, resulting in three lower-dimensional sub-problems that are easily solvable via our strategy. Besides reducing the searching dimension, our decomposition enables the leverage of 1-dimensional interval stabbing at all three stages for searching acceleration. Moreover, we propose a valid sampling strategy to guarantee our sampling effectiveness, and a compatibility verification setup to further accelerate our search. Extensive experiments on both simulated and real-world datasets demonstrate that our approach exhibits comparable robustness with state-of-the-art methods while achieving a significant efficiency boost.