DJI Innovations Inc
Abstract:Spiking neural networks (SNNs) are powerful models of spatiotemporal computation and are well suited for deployment on resource-constrained edge devices and neuromorphic hardware due to their low power consumption. Leveraging attention mechanisms similar to those found in their artificial neural network counterparts, recently emerged spiking transformers have showcased promising performance and efficiency by capitalizing on the binary nature of spiking operations. Recognizing the current lack of dedicated hardware support for spiking transformers, this paper presents the first work on 3D spiking transformer hardware architecture and design methodology. We present an architecture and physical design co-optimization approach tailored specifically for spiking transformers. Through memory-on-logic and logic-on-logic stacking enabled by 3D integration, we demonstrate significant energy and delay improvements compared to conventional 2D CMOS integration.
Abstract:The rapid development of Multimodal Large Language Models (MLLMs) has expanded their capabilities from image comprehension to video understanding. However, most of these MLLMs focus primarily on offline video comprehension, necessitating extensive processing of all video frames before any queries can be made. This presents a significant gap compared to the human ability to watch, listen, think, and respond to streaming inputs in real time, highlighting the limitations of current MLLMs. In this paper, we introduce StreamingBench, the first comprehensive benchmark designed to evaluate the streaming video understanding capabilities of MLLMs. StreamingBench assesses three core aspects of streaming video understanding: (1) real-time visual understanding, (2) omni-source understanding, and (3) contextual understanding. The benchmark consists of 18 tasks, featuring 900 videos and 4,500 human-curated QA pairs. Each video features five questions presented at different time points to simulate a continuous streaming scenario. We conduct experiments on StreamingBench with 13 open-source and proprietary MLLMs and find that even the most advanced proprietary MLLMs like Gemini 1.5 Pro and GPT-4o perform significantly below human-level streaming video understanding capabilities. We hope our work can facilitate further advancements for MLLMs, empowering them to approach human-level video comprehension and interaction in more realistic scenarios.
Abstract:While recent years have witnessed the advancement in big data and Artificial Intelligence (AI), it is of much importance to safeguard data privacy and security. As an innovative approach, Federated Learning (FL) addresses these concerns by facilitating collaborative model training across distributed data sources without transferring raw data. However, the challenges of robust security and privacy across decentralized networks catch significant attention in dealing with the distributed data in FL. In this paper, we conduct an extensive survey of the security and privacy issues prevalent in FL, underscoring the vulnerability of communication links and the potential for cyber threats. We delve into various defensive strategies to mitigate these risks, explore the applications of FL across different sectors, and propose research directions. We identify the intricate security challenges that arise within the FL frameworks, aiming to contribute to the development of secure and efficient FL systems.
Abstract:While the capabilities of autonomous driving have advanced rapidly, merging into dense traffic remains a significant challenge, many motion planning methods for this scenario have been proposed but it is hard to evaluate them. Most existing closed-loop simulators rely on rule-based controls for other vehicles, which results in a lack of diversity and randomness, thus failing to accurately assess the motion planning capabilities in highly interactive scenarios. Moreover, traditional evaluation metrics are insufficient for comprehensively evaluating the performance of merging in dense traffic. In response, we proposed a closed-loop evaluation benchmark for assessing motion planning capabilities in merging scenarios. Our approach involves other vehicles trained in large scale datasets with micro-behavioral characteristics that significantly enhance the complexity and diversity. Additionally, we have restructured the evaluation mechanism by leveraging large language models to assess each autonomous vehicle merging onto the main road. Extensive experiments have demonstrated the advanced nature of this evaluation benchmark. Through this benchmark, we have obtained an evaluation of existing methods and identified common issues. The environment and vehicle motion planning models we have designed can be accessed at https://anonymous.4open.science/r/Bench4Merge-EB5D
Abstract:Current automatic deep learning (i.e., AutoDL) frameworks rely on training feedback from actual runs, which often hinder their ability to provide quick and clear performance predictions for selecting suitable DL systems. To address this issue, we propose EfficientDL, an innovative deep learning board designed for automatic performance prediction and component recommendation. EfficientDL can quickly and precisely recommend twenty-seven system components and predict the performance of DL models without requiring any training feedback. The magic of no training feedback comes from our proposed comprehensive, multi-dimensional, fine-grained system component dataset, which enables us to develop a static performance prediction model and comprehensive optimized component recommendation algorithm (i.e., {\alpha}\b{eta}-BO search), removing the dependency on actually running parameterized models during the traditional optimization search process. The simplicity and power of EfficientDL stem from its compatibility with most DL models. For example, EfficientDL operates seamlessly with mainstream models such as ResNet50, MobileNetV3, EfficientNet-B0, MaxViT-T, Swin-B, and DaViT-T, bringing competitive performance improvements. Besides, experimental results on the CIFAR-10 dataset reveal that EfficientDL outperforms existing AutoML tools in both accuracy and efficiency (approximately 20 times faster along with 1.31% Top-1 accuracy improvement than the cutting-edge methods). Source code, pretrained models, and datasets are available at https://github.com/OpenSELab/EfficientDL.
Abstract:Automatic Emergency Braking (AEB) systems are a crucial component in ensuring the safety of passengers in autonomous vehicles. Conventional AEB systems primarily rely on closed-set perception modules to recognize traffic conditions and assess collision risks. To enhance the adaptability of AEB systems in open scenarios, we propose Dual-AEB, a system combines an advanced multimodal large language model (MLLM) for comprehensive scene understanding and a conventional rule-based rapid AEB to ensure quick response times. To the best of our knowledge, Dual-AEB is the first method to incorporate MLLMs within AEB systems. Through extensive experimentation, we have validated the effectiveness of our method. The source code will be available at https://github.com/ChipsICU/Dual-AEB.
Abstract:Magnetic Resonance Fingerprinting (MRF) has emerged as a promising quantitative imaging technique within the field of Magnetic Resonance Imaging (MRI), offers comprehensive insights into tissue properties by simultaneously acquiring multiple tissue parameter maps in a single acquisition. Sequence optimization is crucial for improving the accuracy and efficiency of MRF. In this work, a novel framework for MRF sequence optimization is proposed based on the Ziv-Zakai bound (ZZB). Unlike the Cram\'er-Rao bound (CRB), which aims to enhance the quality of a single fingerprint signal with deterministic parameters, ZZB provides insights into evaluating the minimum mismatch probability for pairs of fingerprint signals within the specified parameter range in MRF. Specifically, the explicit ZZB is derived to establish a lower bound for the discrimination error in the fingerprint signal matching process within MRF. This bound illuminates the intrinsic limitations of MRF sequences, thereby fostering a deeper understanding of existing sequence performance. Subsequently, an optimal experiment design problem based on ZZB was formulated to ascertain the optimal scheme of acquisition parameters, maximizing discrimination power of MRF between different tissue types. Preliminary numerical experiments show that the optimized ZZB scheme outperforms both the conventional and CRB schemes in terms of the reconstruction accuracy of multiple parameter maps.
Abstract:Active perception, a crucial human capability, involves setting a goal based on the current understanding of the environment and performing actions to achieve that goal. Despite significant efforts in evaluating Multimodal Large Language Models (MLLMs), active perception has been largely overlooked. To address this gap, we propose a novel benchmark named ActiView to evaluate active perception in MLLMs. Since comprehensively assessing active perception is challenging, we focus on a specialized form of Visual Question Answering (VQA) that eases the evaluation yet challenging for existing MLLMs. Given an image, we restrict the perceptual field of a model, requiring it to actively zoom or shift its perceptual field based on reasoning to answer the question successfully. We conduct extensive evaluation over 27 models, including proprietary and open-source models, and observe that the ability to read and comprehend multiple images simultaneously plays a significant role in enabling active perception. Results reveal a significant gap in the active perception capability of MLLMs, indicating that this area deserves more attention. We hope that our benchmark could help develop methods for MLLMs to understand multimodal inputs in more natural and holistic ways.
Abstract:Semi-supervised learning (SSL) commonly exhibits confirmation bias, where models disproportionately favor certain classes, leading to errors in predicted pseudo labels that accumulate under a self-training paradigm. Unlike supervised settings, which benefit from a rich, static data distribution, SSL inherently lacks mechanisms to correct this self-reinforced bias, necessitating debiased interventions at each training step. Although the generation of debiased pseudo labels has been extensively studied, their effective utilization remains underexplored. Our analysis indicates that data from biased classes should have a reduced influence on parameter updates, while more attention should be given to underrepresented classes. To address these challenges, we introduce TaMatch, a unified framework for debiased training in SSL. TaMatch employs a scaling ratio derived from both a prior target distribution and the model's learning status to estimate and correct bias at each training step. This ratio adjusts the raw predictions on unlabeled data to produce debiased pseudo labels. In the utilization phase, these labels are differently weighted according to their predicted class, enhancing training equity and minimizing class bias. Additionally, TaMatch dynamically adjust the target distribution in response to the model's learning progress, facilitating robust handling of practical scenarios where the prior distribution is unknown. Empirical evaluations show that TaMatch significantly outperforms existing state-of-the-art methods across a range of challenging image classification tasks, highlighting the critical importance of both the debiased generation and utilization of pseudo labels in SSL.
Abstract:In addressing the pivotal role of translating natural language queries into SQL commands, we propose a suite of compact, fine-tuned models and self-refine mechanisms to democratize data access and analysis for non-expert users, mitigating risks associated with closed-source Large Language Models. Specifically, we constructed a dataset of over 20K sample for Text-to-SQL as well as the preference dateset, to improve the efficiency in the domain of SQL generation. To further ensure code validity, a code corrector was integrated into the model. Our system, DataGpt-sql, achieved 87.2\% accuracy on the spider-dev, respectively, showcasing the effectiveness of our solution in text-to-SQL conversion tasks. Our code, data, and models are available at \url{https://github.com/CainiaoTechAi/datagpt-sql-7b}