DJI Innovations Inc
Abstract:The rapid advancing of Multimodal Large Language Models (MLLMs) has spurred interest in complex multimodal reasoning tasks in the real-world and virtual environment, which require coordinating multiple abilities, including visual perception, visual reasoning, spatial awareness, and target deduction. However, existing evaluations primarily assess the final task completion, often degrading assessments to isolated abilities such as visual grounding and visual question answering. Less attention is given to comprehensively and quantitatively analyzing reasoning process in multimodal environments, which is crucial for understanding model behaviors and underlying reasoning mechanisms beyond merely task success. To address this, we introduce MM-Escape, an extensible benchmark for investigating multimodal reasoning, inspired by real-world escape games. MM-Escape emphasizes intermediate model behaviors alongside final task completion. To achieve this, we develop EscapeCraft, a customizable and open environment that enables models to engage in free-form exploration for assessing multimodal reasoning. Extensive experiments show that MLLMs, regardless of scale, can successfully complete the simplest room escape tasks, with some exhibiting human-like exploration strategies. Yet, performance dramatically drops as task difficulty increases. Moreover, we observe that performance bottlenecks vary across models, revealing distinct failure modes and limitations in their multimodal reasoning abilities, such as repetitive trajectories without adaptive exploration, getting stuck in corners due to poor visual spatial awareness, and ineffective use of acquired props, such as the key. We hope our work sheds light on new challenges in multimodal reasoning, and uncovers potential improvements in MLLMs capabilities.
Abstract:Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 14.3% compared with SOTA.
Abstract:We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Abstract:In tasks like summarization and open-book question answering (QA), Large Language Models (LLMs) often encounter "contextual hallucination", where they produce irrelevant or incorrect responses despite having access to accurate source information. This typically occurs because these models tend to prioritize self-generated content over the input context, causing them to disregard pertinent details. To address this challenge, we introduce a novel method called "Guided Attention Map Editing" (GAME), which dynamically adjusts attention maps to improve contextual relevance. During inference, GAME employs a trained classifier to identify attention maps prone to inducing hallucinations and executes targeted interventions. These interventions, guided by gradient-informed "edit directions'', strategically redistribute attention weights across various heads to effectively reduce hallucination. Comprehensive evaluations on challenging summarization and open-book QA tasks show that GAME consistently reduces hallucinations across a variety of open-source models. Specifically, GAME reduces hallucinations by 10% in the XSum summarization task while achieving a 7X speed-up in computational efficiency compared to the state-of-the-art baselines.
Abstract:Dongba pictographs are the only pictographs still in use in the world. They have pictorial ideographic features, and their symbols carry rich cultural and contextual information. Due to the lack of relevant datasets, existing research has difficulty in advancing the study of semantic understanding of Dongba pictographs. To this end, we propose DongbaMIE, the first multimodal dataset for semantic understanding and extraction of Dongba pictographs. The dataset consists of Dongba pictograph images and their corresponding Chinese semantic annotations. It contains 23,530 sentence-level and 2,539 paragraph-level images, covering four semantic dimensions: objects, actions, relations, and attributes. We systematically evaluate the GPT-4o, Gemini-2.0, and Qwen2-VL models. Experimental results show that the F1 scores of GPT-4o and Gemini in the best object extraction are only 3.16 and 3.11 respectively. The F1 score of Qwen2-VL after supervised fine-tuning is only 11.49. These results suggest that current large multimodal models still face significant challenges in accurately recognizing the diverse semantic information in Dongba pictographs. The dataset can be obtained from this URL.
Abstract:LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
Abstract:Direct Preference Optimization (DPO) has gained attention as an efficient alternative to reinforcement learning from human feedback (RLHF) for aligning large language models (LLMs) with human preferences. Despite its advantages, DPO suffers from a length bias, generating responses longer than those from the reference model. Existing solutions like SimPO and SamPO address this issue but uniformly treat the contribution of rewards across sequences, overlooking temporal dynamics. To this end, we propose an enhanced preference optimization method that incorporates a temporal decay factor controlled by a gamma parameter. This dynamic weighting mechanism adjusts the influence of each reward based on its position in the sequence, prioritizing earlier tokens that are more critical for alignment. By adaptively focusing on more relevant feedback, our approach mitigates overfitting to less pertinent data and remains responsive to evolving human preferences. Experimental results on several benchmarks show that our approach consistently outperforms vanilla DPO by 5.9-8.8 points on AlpacaEval 2 and 3.3-9.7 points on Arena-Hard across different model architectures and sizes. Furthermore, additional experiments on mathematical and reasoning benchmarks (MMLU, GSM8K, and MATH) confirm that our method enhances performance without compromising general capabilities. Our codebase would be available at \url{https://github.com/LotuSrc/D2PO}.
Abstract:The design of analog circuits is a cornerstone of integrated circuit (IC) development, requiring the optimization of complex, interconnected sub-structures such as amplifiers, comparators, and buffers. Traditionally, this process relies heavily on expert human knowledge to refine design objectives by carefully tuning sub-components while accounting for their interdependencies. Existing methods, such as Bayesian Optimization (BO), offer a mathematically driven approach for efficiently navigating large design spaces. However, these methods fall short in two critical areas compared to human expertise: (i) they lack the semantic understanding of the sizing solution space and its direct correlation with design objectives before optimization, and (ii) they fail to reuse knowledge gained from optimizing similar sub-structures across different circuits. To overcome these limitations, we propose the Large Language Model-based Universal Sizing Optimizer (LLM-USO), which introduces a novel method for knowledge representation to encode circuit design knowledge in a structured text format. This representation enables the systematic reuse of optimization insights for circuits with similar sub-structures. LLM-USO employs a hybrid framework that integrates BO with large language models (LLMs) and a learning summary module. This approach serves to: (i) infuse domain-specific knowledge into the BO process and (ii) facilitate knowledge transfer across circuits, mirroring the cognitive strategies of expert designers. Specifically, LLM-USO constructs a knowledge summary mechanism to distill and apply design insights from one circuit to related ones. It also incorporates a knowledge summary critiquing mechanism to ensure the accuracy and quality of the summaries and employs BO-guided suggestion filtering to identify optimal design points efficiently.
Abstract:Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
Abstract:Superpixel segmentation is a foundation for many higher-level computer vision tasks, such as image segmentation, object recognition, and scene understanding. Existing graph-based superpixel segmentation methods typically concentrate on the relationships between a given pixel and its directly adjacent pixels while overlooking the influence of non-adjacent pixels. These approaches do not fully leverage the global information in the graph, leading to suboptimal segmentation quality. To address this limitation, we present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory. Specifically, we first design a novel graph construction strategy that incrementally explores the pixel neighborhood to add edges based on 1-dimensional structural entropy (1D SE). This strategy maximizes the retention of graph information while avoiding an overly complex graph structure. Then, we design a new 2D SE-guided hierarchical graph partitioning method, which iteratively merges pixel clusters layer by layer to reduce the graph's 2D SE until a predefined segmentation scale is achieved. Experimental results on three benchmark datasets demonstrate that the SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms. The source code is available at \url{https://github.com/SELGroup/SIT-HSS}.