Abstract:Label scarcity problem is the main challenge that hinders the wide application of deep learning systems in automatic cardiovascular diseases (CVDs) detection using electrocardiography (ECG). Tuning pre-trained models alleviates this problem by transferring knowledge learned from large datasets to downstream small datasets. However, bottlenecks in computational efficiency and CVDs detection performance limit its clinical applications. It is difficult to improve the detection performance without significantly sacrificing model computational efficiency. Here, we propose a computation-efficient semi-supervised learning paradigm (FastECG) for robust and computation-efficient CVDs detection using ECG. It enables a robust adaptation of pre-trained models on downstream datasets with limited supervision and high computational efficiency. First, a random-deactivation technique is developed to achieve robust and fast low-rank adaptation of pre-trained weights. Subsequently, we propose a one-shot rank allocation module to determine the optimal ranks for the update matrices of the pre-trained weights. Finally, a lightweight semi-supervised learning pipeline is introduced to enhance model performance by leveraging labeled and unlabeled data with high computational efficiency. Extensive experiments on four downstream ECG datasets demonstrate that FastECG not only outperforms the state-of-the-art methods in multi-label CVDs detection but also consumes fewer GPU footprints, training time, and parameter storage space. As such, this paradigm provides an effective solution for achieving high computational efficiency and robust detection performance in the clinical applications of pre-trained models under limited supervision.
Abstract:Although Large Language Models (LLMs) have demonstrated strong performance on a wide range of tasks, they still face reliability challenges such as hallucination. Previous studies reveal that highly capable LLMs like GPT-4 are effective in judging the reliability of individual responses, while less capable ones are often tuned to evaluate the relative reliability of responses to the same query. To enable less capable LLMs to effectively judge the reliability of individual responses, we propose a novel method named $\textit{Meta}$ $\textit{Ranking}$ (MR). Unlike previous methods, which assess the response directly, we achieve the judgement by comparing the target query-response pair with reference query-response pairs. We found its remarkable effectiveness in error detection for LLM responses on reasoning tasks, where less capable LLMs could outperform strong baselines, even without fine-tuning. We further demonstrate that MR can be used to enhance the performance of LLMs in two practical applications: query routing and iterative training data filtering. The former achieves GPT-4-turbo comparable performance with less than half the token consumption, while the latter makes the instruction-tuned LLaMA-7B and Phi-2, a 2.7B model, significantly surpass Alpaca-13B over fewer training samples, underscoring the high potential of our proposed method.
Abstract:While large language models (LLMs) have been pre-trained on multilingual corpora, their performance still lags behind in most languages compared to a few resource-rich languages. One common approach to mitigate this issue is to translate training data from resource-rich languages into other languages and then continue training. However, using the data obtained solely relying on translation while ignoring the original capabilities of LLMs across languages is not always effective, which we show will limit the performance of cross-lingual knowledge transfer. In this work, we propose SDRRL, a method based on Self-Distillation from Resource-Rich Languages that effectively improve multilingual performance by leveraging the internal capabilities of LLMs on resource-rich languages. We evaluate on different LLMs (LLaMA-2 and SeaLLM) and source languages across various comprehension and generation tasks, experimental results demonstrate that SDRRL can significantly enhance multilingual capabilities while minimizing the impact on original performance in resource-rich languages.
Abstract:The rapid progress of foundation models has led to the prosperity of autonomous agents, which leverage the universal capabilities of foundation models to conduct reasoning, decision-making, and environmental interaction. However, the efficacy of agents remains limited when operating in intricate, realistic environments. In this work, we introduce the principles of $\mathbf{U}$nified $\mathbf{A}$lignment for $\mathbf{A}$gents ($\mathbf{UA}^2$), which advocate for the simultaneous alignment of agents with human intentions, environmental dynamics, and self-constraints such as the limitation of monetary budgets. From the perspective of $\mathbf{UA}^2$, we review the current agent research and highlight the neglected factors in existing agent benchmarks and method candidates. We also conduct proof-of-concept studies by introducing realistic features to WebShop, including user profiles to demonstrate intentions, personalized reranking for complex environmental dynamics, and runtime cost statistics to reflect self-constraints. We then follow the principles of $\mathbf{UA}^2$ to propose an initial design of our agent, and benchmark its performance with several candidate baselines in the retrofitted WebShop. The extensive experimental results further prove the importance of the principles of $\mathbf{UA}^2$. Our research sheds light on the next steps of autonomous agent research with improved general problem-solving abilities.
Abstract:Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved. Existing approaches employ a fixed set of agents to interact with each other in a static architecture, which limits their generalizability to various tasks and requires strong human prior in designing these agents. In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we build a framework named Dynamic LLM-Agent Network ($\textbf{DyLAN}$) for LLM-agent collaboration on complicated tasks like reasoning and code generation. DyLAN enables agents to interact for multiple rounds in a dynamic architecture with inference-time agent selection and an early-stopping mechanism to improve performance and efficiency. We further design an automatic agent team optimization algorithm based on an unsupervised metric termed $\textit{Agent Importance Score}$, enabling the selection of best agents based on the contribution each agent makes. Empirically, we demonstrate that DyLAN performs well in both reasoning and code generation tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and HumanEval, respectively, compared to a single execution on GPT-35-turbo. On specific subjects of MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.
Abstract:Electrocardiography (ECG) is a non-invasive tool for predicting cardiovascular diseases (CVDs). Current ECG-based diagnosis systems show promising performance owing to the rapid development of deep learning techniques. However, the label scarcity problem, the co-occurrence of multiple CVDs and the poor performance on unseen datasets greatly hinder the widespread application of deep learning-based models. Addressing them in a unified framework remains a significant challenge. To this end, we propose a multi-label semi-supervised model (ECGMatch) to recognize multiple CVDs simultaneously with limited supervision. In the ECGMatch, an ECGAugment module is developed for weak and strong ECG data augmentation, which generates diverse samples for model training. Subsequently, a hyperparameter-efficient framework with neighbor agreement modeling and knowledge distillation is designed for pseudo-label generation and refinement, which mitigates the label scarcity problem. Finally, a label correlation alignment module is proposed to capture the co-occurrence information of different CVDs within labeled samples and propagate this information to unlabeled samples. Extensive experiments on four datasets and three protocols demonstrate the effectiveness and stability of the proposed model, especially on unseen datasets. As such, this model can pave the way for diagnostic systems that achieve robust performance on multi-label CVDs prediction with limited supervision.
Abstract:Multi-source translation (MST), which typically receives multiple source sentences of the same meaning in different languages, has been shown superior to single-source translation. As the quantity of multi-source parallel data is limited, taking full advantage of single-source data and limited multi-source data to make models perform well when receiving as many as possible sources remains a challenge. Unlike previous work mostly devoted to supervised scenarios, we focus on zero-shot MST: expecting models to be able to process unseen combinations of multiple sources, e.g., unseen language combinations, during inference. We propose a simple yet effective parameter efficient method, named Prompt Gating, which appends prompts to the model inputs and attaches gates on the extended hidden states for each encoder layer. It shows strong zero-shot transferability (+9.0 BLEU points maximally) and remarkable compositionality (+15.6 BLEU points maximally) on MST, and also shows its superiorities over baselines on lexically constrained translation.
Abstract:Detecting Out-of-Domain (OOD) or unknown intents from user queries is essential in a task-oriented dialog system. A key challenge of OOD detection is to learn discriminative semantic features. Traditional cross-entropy loss only focuses on whether a sample is correctly classified, and does not explicitly distinguish the margins between categories. In this paper, we propose a supervised contrastive learning objective to minimize intra-class variance by pulling together in-domain intents belonging to the same class and maximize inter-class variance by pushing apart samples from different classes. Besides, we employ an adversarial augmentation mechanism to obtain pseudo diverse views of a sample in the latent space. Experiments on two public datasets prove the effectiveness of our method capturing discriminative representations for OOD detection.