Abstract:Deep convolutional neural networks (DCNNs) have demonstrated excellent performance in object recognition and have been found to share some similarities with brain visual processing. However, the substantial gap between DCNNs and human visual perception still exists. Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception. Can we teach DCNNs human fMRI signals to achieve a more brain-like model? To answer this question, this study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework. This framework has been shown to effectively enable the model to learn human brain representations. The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG) alignment evaluations. Additionally, we conducted an in-depth analyses to investigate how the internal representations of ReAlnet-fMRI differ from CORnet in encoding various object dimensions. These findings provide the possibility of enhancing the brain-likeness of visual models by integrating human neural data, helping to bridge the gap between computer vision and visual neuroscience.
Abstract:Large Language Models (LLMs) have achieved remarkable performance in objective tasks such as open-domain question answering and mathematical reasoning, which can often be solved through recalling learned factual knowledge or chain-of-thought style reasoning. However, we find that the performance of LLMs in subjective tasks is still unsatisfactory, such as metaphor recognition, dark humor detection, etc. Compared to objective tasks, subjective tasks focus more on interpretation or emotional response rather than a universally accepted reasoning pathway. Based on the characteristics of the tasks and the strong dialogue-generation capabilities of LLMs, we propose RiC (Reasoning in Conversation), a method that focuses on solving subjective tasks through dialogue simulation. The motivation of RiC is to mine useful contextual information by simulating dialogues instead of supplying chain-of-thought style rationales, thereby offering potential useful knowledge behind dialogues for giving the final answers. We evaluate both API-based and open-source LLMs including GPT-4, ChatGPT, and OpenChat across twelve tasks. Experimental results show that RiC can yield significant improvement compared with various baselines.
Abstract:Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.
Abstract:While large language models (LLMs) have been pre-trained on multilingual corpora, their performance still lags behind in most languages compared to a few resource-rich languages. One common approach to mitigate this issue is to translate training data from resource-rich languages into other languages and then continue training. However, using the data obtained solely relying on translation while ignoring the original capabilities of LLMs across languages is not always effective, which we show will limit the performance of cross-lingual knowledge transfer. In this work, we propose SDRRL, a method based on Self-Distillation from Resource-Rich Languages that effectively improve multilingual performance by leveraging the internal capabilities of LLMs on resource-rich languages. We evaluate on different LLMs (LLaMA-2 and SeaLLM) and source languages across various comprehension and generation tasks, experimental results demonstrate that SDRRL can significantly enhance multilingual capabilities while minimizing the impact on original performance in resource-rich languages.
Abstract:The rapid progress of foundation models has led to the prosperity of autonomous agents, which leverage the universal capabilities of foundation models to conduct reasoning, decision-making, and environmental interaction. However, the efficacy of agents remains limited when operating in intricate, realistic environments. In this work, we introduce the principles of $\mathbf{U}$nified $\mathbf{A}$lignment for $\mathbf{A}$gents ($\mathbf{UA}^2$), which advocate for the simultaneous alignment of agents with human intentions, environmental dynamics, and self-constraints such as the limitation of monetary budgets. From the perspective of $\mathbf{UA}^2$, we review the current agent research and highlight the neglected factors in existing agent benchmarks and method candidates. We also conduct proof-of-concept studies by introducing realistic features to WebShop, including user profiles to demonstrate intentions, personalized reranking for complex environmental dynamics, and runtime cost statistics to reflect self-constraints. We then follow the principles of $\mathbf{UA}^2$ to propose an initial design of our agent, and benchmark its performance with several candidate baselines in the retrofitted WebShop. The extensive experimental results further prove the importance of the principles of $\mathbf{UA}^2$. Our research sheds light on the next steps of autonomous agent research with improved general problem-solving abilities.
Abstract:Despite the remarkable strides made in artificial intelligence, current object recognition models still lag behind in emulating the mechanism of visual information processing in human brains. Recent studies have highlighted the potential of using neural data to mimic brain processing; however, these often reply on invasive neural recordings from non-human subjects, leaving a critical gap in our understanding of human visual perception and the development of more human brain-like vision models. Addressing this gap, we present, for the first time, "Re(presentational)Al(ignment)net", a vision model aligned with human brain activity based on non-invasive EEG recordings, demonstrating a significantly higher similarity to human brain representations. Our innovative image-to-brain multi-layer encoding alignment framework not only optimizes multiple layers of the model, marking a substantial leap in neural alignment, but also enables the model to efficiently learn and mimic human brain's visual representational patterns across object categories and different neural data modalities. Furthermore, we discover that alignment with human brain representations improves the model's adversarial robustness. Our findings suggest that ReAlnet sets a new precedent in the field, bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
Abstract:Symbols (or more broadly, non-natural language textual representations) such as numerical sequences, molecular formulas, and table delimiters widely exist, playing important roles in various tasks such as abstract reasoning, chemical property prediction, and table question answering. Despite the impressive natural language comprehension capabilities of large language models (LLMs), their reasoning abilities for symbols remain inadequate, which could attributed to the difference between symbol representations and general natural languages. We propose symbol-to-language (S2L), a tuning-free method that enables large language models to solve symbol-related problems with information expressed in natural language. Specifically, S2L first converts the symbols involved to language-based representations, which can be implemented by prompting LLMs or leveraging external tools, then these language-based representations are integrated into the original problem via direct substitution or concatenation, serving as useful input information for LLMs. We evaluate the S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat) models over eight symbol-related tasks, ranging from symbol-only abstract reasoning to sentiment analysis in social media. Experimental results show that S2L consistently leads to superior performance. For example, by employing S2L for GPT-4, there can be average significant improvements of +21.9% and +9.5% for subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available at https://github.com/THUNLP-MT/symbol2language.
Abstract:Since the advent of personal computing devices, intelligent personal assistants (IPAs) have been one of the key technologies that researchers and engineers have focused on, aiming to help users efficiently obtain information and execute tasks, and provide users with more intelligent, convenient, and rich interaction experiences. With the development of smartphones and IoT, computing and sensing devices have become ubiquitous, greatly expanding the boundaries of IPAs. However, due to the lack of capabilities such as user intent understanding, task planning, tool using, and personal data management etc., existing IPAs still have limited practicality and scalability. Recently, the emergence of foundation models, represented by large language models (LLMs), brings new opportunities for the development of IPAs. With the powerful semantic understanding and reasoning capabilities, LLM can enable intelligent agents to solve complex problems autonomously. In this paper, we focus on Personal LLM Agents, which are LLM-based agents that are deeply integrated with personal data and personal devices and used for personal assistance. We envision that Personal LLM Agents will become a major software paradigm for end-users in the upcoming era. To realize this vision, we take the first step to discuss several important questions about Personal LLM Agents, including their architecture, capability, efficiency and security. We start by summarizing the key components and design choices in the architecture of Personal LLM Agents, followed by an in-depth analysis of the opinions collected from domain experts. Next, we discuss several key challenges to achieve intelligent, efficient and secure Personal LLM Agents, followed by a comprehensive survey of representative solutions to address these challenges.
Abstract:Large language models (LLMs) have shown superior performance without task-specific fine-tuning. Despite the success, the knowledge stored in the parameters of LLMs could still be incomplete and difficult to update due to the computational costs. As complementary, retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering. However, we find that the retrieved knowledge does not always help and even has a negative impact on original responses occasionally. To better make use of both internal knowledge and external world knowledge, we investigate eliciting the model's ability to recognize what they know and do not know (which is also called self-knowledge) and propose Self-Knowledge guided Retrieval augmentation (SKR), a simple yet effective method which can let LLMs refer to the questions they have previously encountered and adaptively call for external resources when dealing with new questions. We evaluate SKR on multiple datasets and demonstrate that it outperforms chain-of-thought based and fully retrieval-based methods by using either InstructGPT or ChatGPT.
Abstract:Retrieval-augmented methods have received increasing attention to support downstream tasks by leveraging useful information from external resources. Recent studies mainly focus on exploring retrieval to solve knowledge-intensive (KI) tasks. However, the potential of retrieval for most non-knowledge-intensive (NKI) tasks remains under-explored. There are two main challenges to leveraging retrieval-augmented methods for NKI tasks: 1) the demand for diverse relevance score functions and 2) the dilemma between training cost and task performance. To address these challenges, we propose a two-stage framework for NKI tasks, named PGRA. In the first stage, we adopt a task-agnostic retriever to build a shared static index and select candidate evidence efficiently. In the second stage, we design a prompt-guided reranker to rerank the nearest evidence according to task-specific relevance for the reader. Experimental results show that PGRA outperforms other state-of-the-art retrieval-augmented methods. Our analyses further investigate the influence factors to model performance and demonstrate the generality of PGRA. Codes are available at https://github.com/THUNLP-MT/PGRA.