Abstract:LLM-based agents have made significant advancements in interactive environments, such as mobile operations and web browsing, and other domains beyond computer using. Current multi-agent systems universally excel in performance, compared to single agents, but struggle with generalization across environments due to predefined roles and inadequate strategies for generalizing language agents. The challenge of achieving both strong performance and good generalization has hindered the progress of multi-agent systems for interactive environments. To address these issues, we propose CollabUIAgents, a multi-agent reinforcement learning framework with a novel multi-agent credit re-assignment (CR) strategy, assigning process rewards with LLMs rather than environment-specific rewards and learning with synthesized preference data, in order to foster generalizable, collaborative behaviors among the role-free agents' policies. Empirical results show that our framework improves both performance and cross-environment generalizability of multi-agent systems. Moreover, our 7B-parameter system achieves results on par with or exceed strong closed-source models, and the LLM that guides the CR. We also provide insights in using granular CR rewards effectively for environment generalization, and accommodating trained LLMs in multi-agent systems.
Abstract:Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus; therefore, it is crucial to erase this knowledge from the models. Machine unlearning is a promising solution for efficiently removing specific knowledge by post hoc modifying models. In this paper, we propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning. RWKU is designed based on the following three key factors: (1) For the task setting, we consider a more practical and challenging unlearning setting, where neither the forget corpus nor the retain corpus is accessible. (2) For the knowledge source, we choose 200 real-world famous people as the unlearning targets and show that such popular knowledge is widely present in various LLMs. (3) For the evaluation framework, we design the forget set and the retain set to evaluate the model's capabilities across various real-world applications. Regarding the forget set, we provide four four membership inference attack (MIA) methods and nine kinds of adversarial attack probes to rigorously test unlearning efficacy. Regarding the retain set, we assess locality and utility in terms of neighbor perturbation, general ability, reasoning ability, truthfulness, factuality, and fluency. We conduct extensive experiments across two unlearning scenarios, two models and six baseline methods and obtain some meaningful findings. We release our benchmark and code publicly at http://rwku-bench.github.io for future work.
Abstract:Event Causality Identification (ECI) refers to detect causal relations between events in texts. However, most existing studies focus on sentence-level ECI with high-resource language, leaving more challenging document-level ECI (DECI) with low-resource languages under-explored. In this paper, we propose a Heterogeneous Graph Interaction Model with Multi-granularity Contrastive Transfer Learning (GIMC) for zero-shot cross-lingual document-level ECI. Specifically, we introduce a heterogeneous graph interaction network to model the long-distance dependencies between events that are scattered over document. Then, to improve cross-lingual transferability of causal knowledge learned from source language, we propose a multi-granularity contrastive transfer learning module to align the causal representations across languages. Extensive experiments show our framework outperforms previous state-of-the-art model by 9.4% and 8.2% of average F1 score on monolingual and multilingual scenarios respectively. Notably, in multilingual scenario, our zero-shot framework even exceeds GPT-3.5 with few-shot learning by 24.3% in overall performance.
Abstract:With the development of deep learning, natural language processing technology has effectively improved the efficiency of various aspects of the traditional judicial industry. However, most current efforts focus solely on individual judicial stage, overlooking cross-stage collaboration. As the autonomous agents powered by large language models are becoming increasingly smart and able to make complex decisions in real-world settings, offering new insights for judicial intelligence. In this paper, (1) we introduce SimuCourt, a judicial benchmark that encompasses 420 judgment documents from real-world, spanning the three most common types of judicial cases, and a novel task Judicial Decision-Making to evaluate the judicial analysis and decision-making power of agents. To support this task, we construct a large-scale judicial knowledge base, JudicialKB, with multiple legal knowledge. (2) we propose a novel multi-agent framework, AgentsCourt. Our framework follows the real-world classic court trial process, consisting of court debate simulation, legal information retrieval and judgement refinement to simulate the decision-making of judge. (3) we perform extensive experiments, the results demonstrate that, our framework outperforms the existing advanced methods in various aspects, especially in generating legal grounds, where our model achieves significant improvements of 8.6% and 9.1% F1 score in the first and second instance settings, respectively.